数论的方法技巧_第1页
数论的方法技巧_第2页
数论的方法技巧_第3页
数论的方法技巧_第4页
数论的方法技巧_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一页共第十三页第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事” 。因而有人说:“用以发现天才, 在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励, 并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有:1.带余除法:若 a,b是两个整数, b>0,则存在两个整数 q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。特别地,如果

r=0

,那么

a=bq

。这时,

a

被b

整除,记作

b|a

,也称

b是

a的约数,

a是

b的倍数。若a|c,b|c,且a,b互质,则ab|c。唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2< ⋯<pk 为质数,为n的质因数分解或标准分解。

a1,a2,⋯,ak为自然数,并且这种表示是唯一的。

(1)式称4.约数个数定理:设

n的标准分解式为(

1),则它的正约数个数为:d(n)=(a1+1 )(a2+1 )⋯(ak+1 )。整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x<y与x≤y-1是等价的。下面,我们将按解数论题的方法技巧来分类讲解。一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于 问题的解决。这些常用的形式有:页十三页共第1.十进制表示形式: n=an10n+an-110n-1+ ⋯+a0;带余形式:a=bq+r;4.2的乘方与奇数之积式: n=2mt ,其中t为奇数。例1 红、黄、白和蓝色卡片各 1张,每张上写有 1个数字,小明将这 4张卡片如下图放置,使它们构成 1个四位数,并计算这个四位数与它的各位数字之和的 10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是 1998。问:红、黄、蓝 3张卡片上各是什么数字?解:设红、黄、白、蓝色卡片上的数字分别是 a3,a2,a1,a0,则这个四位数可以写成1000a3+100a2+10a1+a0

,它的各位数字之和的

10倍是10(a3+a2+a1+a0 )=10a3+10a2+10a1+10a0 ,这个四位数与它的各位数字之和的 10倍的差是990a3+90a2-9a0=1998 ,110a3+10a2-a0=222 。比较上式等号两边个位、十位和百位,可得a0=8 ,a2=1 ,a3=2 。所以红色卡片上是 2,黄色卡片上是 1,蓝色卡片上是 8。页共第十三页解:依题意,得三 页共第十三页 a+b+c>14 ,说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程。例3从自然数1,2,3,⋯,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?a+b+c=18m其中m,n

,a+b+d=18n是自然数。于是

,c-d=18

(m-n

)。上式说明所取出的数中任意

2个数之差是

18的倍数,即所取出的每个数除以

18所得的余数均相同。设这个余数为 r,则a=18a1+r ,b=18b1+r ,c=18c1+r ,其中a1,b1,c1是整数。于是a+b+c=18 (a1+b1+c1 )+3r因为18|(a+b+c ),所以 18|3r所以,从 1,2,⋯,1000 中可取和能被18整除。例4求自然数 N,使得它能被 5解:把数N写成质因数乘积的形式

。,即6|r,推知r=0,6,12。因为1000=55 ×18+10 ,6,24,42,⋯,996 共56个数,它们中的任意 3个数之和49整除,并且包括 1和N在内,它共有 10个约数。由于

N能被

5和

72=49

整除,故

a3

≥1,a4≥2,其余的指数

ak

为自然数或零。依题意,有a1+1)(a2+1)⋯(an+1)=10。由于a3+1 ≥2,a4+1 ≥3,且10=2 ×5,故=an+1=1⋯a1+1=a2+1=a5+1=四 即a1=a2=a5= ⋯an=0 ,N只能有 2个不同的质因数 5和7,因为a4+13>2,故由a3+1)(a4+1)=10知,a3+1=5 ,a4+1=2=57× 例5如果N是个2与1个奇数的积?

是不可能的。因而1,2,3,⋯,1998

a3+1=2,1999

,a4+1=5,即2-15-14=12005,2000的最小公倍数,那么

。×N=57N等于多少1011=2048>2000

,每一个不大于

2000

的自然数表示为质因数

=1024

,22

解:因为相乘,其中

2的个数不10,所以, N等于10个2与某个奇数的积。 数不多于 10个,而1024=2

说明:上述

5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解。二、枚举法枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。运用枚举法有时要进行恰当的分类, 分类的原则是不重不漏。 正确的分类有助于暴露问题的本质,降低问题的难度。 数论中最常用的分类方法有按模的余数分类, 按奇偶性分类及按数值的大小分类等。例6求这样的三位数,它除以 11所得的余数等于它的三个数字的平方和。分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。设这个三位数的百位、十位、个位的数字分别为

x,y,z。由于任何数除以

11所得余数都不大于

10,所以x2+y2+z2 ≤10,从而1≤x≤3,0≤y≤3,0≤z≤3。所求三位数必在以下数中:,101,102,103,110,111,112,202,201,200,130,122,121,120页共十三第页,212,220,221,300,301,310。不难验证只有100,101两个数符合要求。例7将自然数 N接写在任意一个自然数的右面(例如,将果得到的新数都能被 N整除,那么N称为魔术数。问:小于

22000

接写在35的右面得 352),如的自然数中有多少个魔术数?对N为一位数、两位数、三位数、四位数分别讨论。解:设a,b,c,d是所取出的数中的任意 4个数,则N|100

,所以

N=10

,20

,25,50

;N|1000 ,所以N=100 ,125,200,250,500;4)当N为四位数时,同理可得N=1000,1250,2000,2500,5000。符合条件的有1000,1250。综上所述,魔术数的个数为 14个。说明:(1)我们可以证明: k位魔术数一定是 10k 的约数,反之亦然。2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决。例8有3张扑克牌,牌面数字都在10以内。把这3张牌洗好后,分别发给小明、小亮、小光3人。每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后, 3人各自记录的数字的和顺次为 13,15,23。问:这 3张牌的数字分别是多少?解:13+15+23=51 ,51=3 ×17。因为17>13 ,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是 17,可能的情况有下面 15种:①1,6,10 ②1,7,9③1,8,887,2⑥9,6,2⑤10,5,2④页十三共页第3,4,10⑧3,5,9⑨3,6,83,7,7(11)4,4,9(12)4,5,813)4,6,7(14)5,5,7(15)5,6,6只有第⑧种情况可以满足题目要求,即3+5+5=13 ;3+3+9=15 ;5+9+9=23 。这3张牌的数字分别是3,5和9。例9写出12个都是合数的连续自然数。分析一:在寻找质数的过程中, 我们可以看出 100 以内最多可以写出 7个连续的合数:90,91,,93,94,95,96。我们把筛选法继续运用下去,把考查的范围扩大一些就行了。解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126。分析二:如果

12个连续自然数中,第

1个是

2

的倍数,第

2个是

3

的倍数,第

3个是

4的倍数⋯⋯第

12个是

13

的倍数,那么这

12个数就都是合数。又

m+2

,m+3

,⋯,m+13

12

个连续整数,故只要

m是

2,3,⋯,13

的公倍数,这个连续整数就一定都是合数。解法2:设m为2,3,4,⋯,13m+13 分别是2的倍数,3的倍数,4

这12个数的最小公倍数。 m+2,m+3 ,m+4的倍数⋯⋯ 13的倍数,因此 12个数都是合数。

,⋯,说明:我们还可以写出13!+2,13!+3,⋯,13!+13(其中n!=1×2×3×⋯×n)这

12

个连续合数来。同样,个连续的合数。

m是+m+1

!)m+1

(,⋯,

+3

!)m+1

(,+2

!)m+1

(七页十三 页共第三、归纳法当我们要解决一个问题的时候, 可以先分析这个问题的几种简单的、 特殊的情况,从中发现并归纳出一般规律或作出某种猜想, 从而找到解决问题的途径。 这种从特殊到一般的思维方法称为归纳法。例10 将100 以内的质数从小到大排成一个数字串,依次完成以下 5项工作叫做一次操作:1)将左边第一个数码移到数字串的最右边;2)从左到右两位一节组成若干个两位数;3)划去这些两位数中的合数;4)所剩的两位质数中有相同者,保留左边的一个,其余划去;5)所余的两位质数保持数码次序又组成一个新的数字串。问:经过 1999 次操作,所得的数字串是什么?解:第1次操作得数字串 ;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173。不难看出,后面以 4次为周期循环, 1999=4 ×499+3 ,所以第 1999 次操作所得数字串与第7次相同,是3117。例11有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操再把原来的第三把下一张卡片放在这一摞卡片的最下面。把最上面的第一张卡片舍去,作:页十三页共第张卡片舍去,把下一张卡片放在最下面。反复这样做,直到手中只剩下一张卡片,那么剩下的这张卡片是原来那一摞卡片的第几张?分析与解:可以从简单的不失题目性质的问题入手,寻找规律。列表如下:设这一摞卡片的张数为 N,观察上表可知:a(a=0 ,1,2,3,⋯)时,剩下的这张卡片是原来那一摞卡片的最后一张, (1)当N=2a张;即第2aam<2(+m)时,剩下的这张卡片是原来那一摞卡片的第 2m张。 (2)当N=26+36 ,2×36=72 ,所以剩下这张卡片是原来那一摞卡片的 100=2 取N=100 ,因为第 72张。说明:此题实质上是著名的约瑟夫斯问题:传说古代有一批人被蛮族俘虏了,敌人命令他们排成圆圈,编上号码 1,2,3,⋯然后把 1号杀了,把 3号杀了,总之每隔一个人杀一个人,最后剩下一个人,这个人就是约瑟夫斯。如果这批俘虏有 111 人,那么约瑟夫斯的号码是多少?例12要用天平称出1克、2克、3克⋯⋯40克这些不同的整数克重量,至少要用多少个砝码?这些砝码的重量分别是多少?分析与解: 一般天平两边都可放砝码,我们从最简单的情形开始研究。1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的。2)称重2克,有3种方案:①增加一个 1克的砝码;②用一个 2克的砝码;③用一个 3克的砝码,称重时,把一个 1克的砝码放在称重盘内,把 3克的砝码放在砝码盘内。从数学角度看,就是利用 3-1=2 。(3)称重 3克,用上面的②③两个方案,不用再增加砝码,因此方案①淘汰。1克,用上面的方案③,不用再增加砝码,因此方案②也被淘汰。总之,用 4)称重 4(九页十三第 页共克、3克两个砝码就可以称出( 3+1)克以内的任意整数克重。(5)接着思索可以进行一次飞跃,称重 5克时可以利用9-(3+1)=5,即用一个 9克重的砝码放在砝码盘内, 1克、3克两个砝码放在称重盘内。这样,可以依次称到1+3+9=13 (克)以内的任意整数克重。而要称14克时,按上述规律增加一个砝码,其重为14+13=27 (克),可以称到 1+3+9+27=40 (克)以内的任意整数克重。23克时,所用砝码最少,称重最大,这也是本题的答,这个结论显然可以推广,当天平两端都可放砝码时,使用

3,33, 总之,砝码的重量为1,3,

1案。这是使用砝码最少、称重最大的砝码重量设计方案。练习11.已知某个四位数的十位数字减去 1等于其个位数字,个位数字加 2等于百位数字,这个四位数的数字反着顺序排列成的数与原数之和等于 9878 。试求这个四位数。3.设n是满足下列条件的最小自然数:它们是

75的倍数且恰有

75个不能写成两个奇合数之和的最大偶数是多少?5.把1,2,3,4,⋯,999 这999 个数均匀排成一个大圆圈, 从1开始数:隔过1划掉2,3,隔过 4,划掉 5,6⋯⋯这样每隔一个数划掉两个数,转圈划下去。问:最后剩下哪个数?为什么?6.圆周上放有N枚棋子,如右图所示,B点的一枚棋子紧邻A点的棋子。小洪首先拿走B点处的1枚棋子,然后顺时针每隔1枚拿走2枚棋子,连续转了10周,9次越过A。当将要第10次越过A处棋子取走其它棋子时,小洪发现圆周上余下20多枚棋子。若N是14的倍数,则圆周上还有多少枚棋子?十页共第十三页7.用0,1,2,3,4五个数字组成四位数,每个四位数中均没有重复数字(如1023,2341 ),求全体这样的四位数之和。8.有27个国家参加一次国际会议,每个国家有

2名代表。求证:不可能将

54位代表安排在一张圆桌的周围就座,使得任一国的

2位代表之间都夹有

9个人。练习

1解答1.1987

。(a+d)×1000+(b+c)×110+(a+d)=9878比较等式两边,并注意到数字和及其进位的特点,可知

。a+d=8

,b+c=17

。已知c-1=d ,d+2=b ,可求得a=1,b=9,c=8,d=7。即所求的四位数为1987。2.1324,1423,2314,2413,3412,共5个。3.432。解:为保证n是75的倍数而又尽可能地小,因为75=3×5×5,所以可设n有三个质γβα,并且,γ≥2,3×5,其中α≥0β≥1×,因数2,35,即n=2)=75。()β+1)(γ+1(α+1时,符合题设条件。此时β==4,γ=2易知当α。4.3827,,33。252115938解:小于的奇合数是,,,,皆可表示为二奇合数之和:A的偶数38不能表示成它们之中任二者之和,而大于38十一页十三页共第A末位是0,则A=15+5n,A末位是2,则A=27+5n,A末位是4,则A=9+5n,A末位是6,则A=21+5n,A末位是8,则A=33+5n,其中n为大于1的奇数。因此,38即为所求。5.406。nn-131圈剩下个数(n为自然数)解:从特殊情况入手,可归纳出:如果是3,那么划n-2个数⋯⋯划(n-1)圈就剩3个数,再划1圈,最后剩下的还是起始数1。2个数,划圈剩下36766=)729个数,个数,剩下的(=)2703<999<3999-3,从999个数中划掉(3即可运用上述结论。因为每次划掉的是2个数,所以划掉270个数必须划135次,这时划掉的第270个数是6个数的起始数为406。所以最后剩下的那个数是406。)405,则留下的3(135×3=6.23枚。解:设圆周上余a枚棋子。因为从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时小洪拿走了2a枚棋子,所以,在第9次将要越过A处棋子时,圆周上有3a枚棋子。2a枚棋子⋯⋯在第1次将要越过A3处棋子时,圆周上有依此类推,在第8次将要越过A99a-13)小洪拿走了[2(a枚棋子,在第1次将要越过A处棋子之前,3圆周上有处棋子时,9910a-1。a=3(3a-1)+1+3+1]枚棋子,所以N=210a=59049a-1是14的倍数,则N就是2和7的公倍数,所以a必须是奇数;N=3若若N=(7×8435+4)a-1=7×8435a+4a-1是7的倍数,则4a-1必须是7的倍数,当a=21,25,27,29时,4a-1不是7的倍数,当a=23时,4a-1=91=7×13,是7的倍数。当N是14的倍数时,圆周上有23枚棋子。7.259980

。用十进位制表示的若干个四位数之和的加法原理为: 解:十二 页共第十三页若干个四位数之和 =千位数数字之和× 1000+百位数数字之和× 100+十位数数字之和× 10+个位数数字之和。以1,2,3,/r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论