![2022年山东省德州市六校数学九年级第一学期期末经典试题含解析_第1页](http://file4.renrendoc.com/view/0c8c5a70032a1209b1d9acb450c2a4df/0c8c5a70032a1209b1d9acb450c2a4df1.gif)
![2022年山东省德州市六校数学九年级第一学期期末经典试题含解析_第2页](http://file4.renrendoc.com/view/0c8c5a70032a1209b1d9acb450c2a4df/0c8c5a70032a1209b1d9acb450c2a4df2.gif)
![2022年山东省德州市六校数学九年级第一学期期末经典试题含解析_第3页](http://file4.renrendoc.com/view/0c8c5a70032a1209b1d9acb450c2a4df/0c8c5a70032a1209b1d9acb450c2a4df3.gif)
![2022年山东省德州市六校数学九年级第一学期期末经典试题含解析_第4页](http://file4.renrendoc.com/view/0c8c5a70032a1209b1d9acb450c2a4df/0c8c5a70032a1209b1d9acb450c2a4df4.gif)
![2022年山东省德州市六校数学九年级第一学期期末经典试题含解析_第5页](http://file4.renrendoc.com/view/0c8c5a70032a1209b1d9acb450c2a4df/0c8c5a70032a1209b1d9acb450c2a4df5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下表是二次函数的的部分对应值:············则对于该函数的性质的判断:①该二次函数有最小值;②不等式的解集是或③方程的实数根分别位于和之间;④当时,函数值随的增大而增大;其中正确的是:A.①②③ B.②③ C.①② D.①③④2.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为()A. B. C. D.3.如图,在矩形中,,垂足为,设,且,则的长为()A.3 B. C. D.4.下列图形是中心对称图形而不是轴对称图形的是()A. B. C. D.5.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=()A.0 B.3 C.16 D.96.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.7.下列事件是随机事件的是()A.打开电视,正在播放新闻 B.氢气在氧气中燃烧生成水C.离离原上草,一岁一枯荣 D.钝角三角形的内角和大于180°8.若点,,在反比例函数的图像上,则的大小关系是()A. B. C. D.9.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C. D.10.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点且CD=4,则OE等于()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为_____.12.从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则关于x的不等式组有解的概率是_____.13.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.14.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=,∠ADC=60°,则劣弧的长为_____.15.如图,直线:()与,轴分别交于,两点,以为边在直线的上方作正方形,反比例函数和的图象分别过点和点.若,则的值为______.16.在相似的两个三角形中,已知其中一个三角形三边的长是3,4,5,另一个三角形有一边长是2,则另一个三角形的周长是.17.如图,AB为的直径,弦CD⊥AB于点E,点F在圆上,且=,BE=2,CD=8,CF交AB于点G,则弦CF的长度为__________,AG的长为____________.18.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.三、解答题(共66分)19.(10分)如图所示,某学校有一边长为20米的正方形区域(四周阴影是四个全等的矩形,记为区域甲;中心区是正方形,记为区域乙).区域甲建设成休闲区,区域乙建成展示区,已知甲、乙两个区域的建设费用如下表:区域甲乙价格(百元米2)65设矩形的较短边的长为米,正方形区域建设总费用为百元.(1)的长为米(用含的代数式表示);(2)求关于的函数解析式;(3)当中心区的边长要求不低于8米且不超过12米时,预备建设资金220000元够用吗?请利用函数的增减性来说明理由.20.(6分)如图,在△ABC中,∠CAB=90°,D是边BC上一点,,E为线段AD的中点,连结CE并延长交AB于点F.(1)求证:AD⊥BC.(2)若AF:BF=1:3,求证:CD:DB=1:2.21.(6分)已知关于x的一元二次方程x2+(2k+1)x+k2=0有实数根.(1)求k的取值范围.(2)设方程的两个实数根分别为x1、x2,若2x1x2﹣x1﹣x2=1,求k的值.22.(8分)我国互联网发展走到了世界的前列,尤其是电子商务,据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得的利润为W(元),求利润的最大值;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)23.(8分)小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.(8分)如图,在中,,点在边上,点在边上,且是的直径,的平分线与相交于点.(1)证明:直线是的切线;(2)连接,若,,求边的长.25.(10分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.(1)求这个二次函数的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.26.(10分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.(1)在平面直角坐标系中,若点.①在的点中,是线段的“限距点”的是;②点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围
参考答案一、选择题(每小题3分,共30分)1、A【分析】由表知和,的值相等可以得出该二次函数的对称轴、二次函数的增减性、从而判定出以及函数的最值情况,再结合这些图像性质对不等式的解集和方程解的范围进行判断即可得出答案.【详解】解:∵当时,;当时,;当时,;当时,∴二次函数的对称轴为直线:∴结合表格数据有:当时,随的增大而增大;当时,随的增大而减小∴,即二次函数有最小值;∴①正确,④错误;∵由表格可知,不等式的解集是或∴②正确;∵由表格可知,方程的实数根分别位于和之间∴③正确.故选:A【点睛】本题主要考查二次函数的性质如:由对称性来求出对称轴、由增减性来判断的正负以及最值情况、利用图像特征来判断不等式的解集或方程解的范围等.2、D【分析】根据抛物线的图像,判断出的符号,从而确定一次函数、反比例函数的图像的位置即可.【详解】解:由抛物线的图像可知:横坐标为1的点,即在第四象限,因此;∴双曲线的图像分布在二、四象限;由于抛物线开口向上,∴,∵对称轴为直线,∴;∵抛物线与轴有两个交点,∴;∴直线经过一、二、四象限;故选:.【点睛】本题主要考查二次函数,一次函数以及反比例函数的图象与解析式的系数关系,熟练掌握函数解析式的系数对图像的影响,是解题的关键.3、C【分析】根据同角的余角相等求出∠ADE=∠ACD,再根据两直线平行,内错角相等可得∠BAC=∠ACD,然后求出AC.【详解】解:∵DE⊥AC,
∴∠ADE+∠CAD=90°,
∵∠ACD+∠CAD=90°,
∴∠ACD=∠ADE=α,
∵矩形ABCD的对边AB∥CD,
∴∠BAC=∠ACD,∵cosα=,,∴AC=.故选:C.【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键.4、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是中心对称图形,不是轴对称图形;故本选项正确;B、是中心对称图形,也是轴对称图形;故本选项错误;C、是中心对称图形,也是轴对称图形;故本选项错误;D、不是中心对称图形,是轴对称图形;故本选项错误;故选A.【点睛】考核知识点:轴对称图形与中心对称图形识别.5、C【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m+1.故设抛物线解析式为y=(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值.【详解】∵抛物线y=x2+bx+c过点A(m,n),B(m+8,n),∴对称轴是x==m+1.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故选:C.【点睛】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.6、C【解析】试题解析:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选C.考点:二次函数的图象;一次函数的图象.7、A【分析】根据随机事件的意义,事件发生的可能性大小判断即可.【详解】解:A、打开电视,正在播放新闻,是随机事件;B、氢气在氧气中燃烧生成水,是必然事件;C、离离原上草,一岁一枯荣,是必然事件;D、钝角三角形的内角和大于180°,是不可能事件;故选:A.【点睛】本题考查可随机事件的意义,正确理解随机事件的意义是解决本题的关键.8、C【解析】根据点A、B、C分别在反比例函数上,可解得、、的值,然后通过比较大小即可解答.【详解】解:将A、B、C的横坐标代入反比函数上,得:y1=-6,y2=3,y3=2,所以,;故选C.【点睛】本题考查了反比例函数的计算,熟练掌握是解题的关键.9、B【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【详解】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选B.【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.10、B【分析】利用菱形的性质以及直角三角形斜边上的中线等于斜边的一半进而得出答案.【详解】∵四边形ABCD是菱形,∴AB=CD=4,AC⊥BD,又∵点E是边AB的中点,∴OE=AB=1.故选:B.【点睛】此题主要考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半,得出OE=AB是解题关键.二、填空题(每小题3分,共24分)11、7【分析】根据平移的性质得到AD=BE=6﹣3=3,由B的坐标为(4,0),得到OB=4,根据OE=OB+BE即可得答案.【详解】∵点A的坐标为(3,),点D的坐标为(6,),把△OAB沿x轴向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐标为(4,0),∴OB=4,∴OE=OB+BE=7,故答案为:7【点睛】本题考查图形平移的性质,平移不改变图形的形状和大小;图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等.12、.【分析】根据关于x的不等式组有解,得出b≤x≤a+1,根据题意列出树状图得出所有等情况数和关于x的不等式组有解的情况数,再根据概率公式即可得出答案.【详解】解:∵关于x的不等式组有解,∴b≤x≤a+1,根据题意画图如下:共有12种等情况数,其中关于x的不等式组有解的情况分别是,,,,,,,,共8种,则有解的概率是;故答案为:.【点睛】本题考查了不等式组的解和用列举法求概率,熟练掌握并灵活运用是解题的关键.13、【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是,∴圆锥的侧面扇形的弧长为cm,,解得:故答案为.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积14、【分析】连接DF,OD,根据圆周角定理得到∠CDF=90°,根据三角形的内角和得到∠COD=120°,根据三角函数的定义得到CF==4,根据弧长公式即可得到结论.【详解】解:如图,连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半径=2,∴劣弧的长==π,故答案为π.【点睛】本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.15、-1【分析】作CH⊥y轴于点H,证明△BAO≌△CBH,可得OA=BH=-3b,OB=CH=-b,可得点C的坐标为(-b,-2b),点D的坐标为(2b,-3b),代入反比例函数的解析式,即可得出k2的值.【详解】解:如图,作CH⊥y轴于点H,
∵四边形ABCD为正方形,
∴AB=BC,∠AOB=∠BHC=10°,∠ABC=10°
∴∠BAO=10°-∠OBA=∠CBH,
∴△BAO≌△CBH(AAS),
∴OA=BH,OB=CH,
∵直线l:(b<0)与x,y轴分别交于A,B两点,
∴A(3b,0),B(0,b),
∵b<0,
∴BH=-3b,CH=-b,
∴点C的坐标为(-b,-2b),
同理,点D的坐标为(2b,-3b),
∵k1=3,
∴(-b)×(-2b)=3,即2b2=3,
∴k2=2b×(-3b)=-6b2=-1.
故答案为:-1.【点睛】本题考查反比例函数图象上点的坐标的特征,直线与坐标轴的交点,正方形的性质,全等三角形的判定和性质.解题的关键是用b来表示出点C,D的坐标.16、8或6或【分析】由一个三角形三边的长是3,4,5,可求得其周长,又由相似三角形周长的比等于相似比,分别从2与3对应,2与4对应,2与5对应,去分析求解即可求得答案.【详解】解:∵一个三角形三边的长是3,4,5,
∴此三角形的周长为:3+4+5=12,
∵在相似的两个三角形中,另一个三角形有一边长是2,
∴若2与3对应,则另一个三角形的周长是:;若2与4对应,则另一个三角形的周长是:;若2与5对应,则另一个三角形的周长是:.【点睛】本题考查相似三角形性质.熟知相似三角形性质,解答时由于对应边到比发生变化,会得到不同到结果,本题难度不大,但易漏求,属于基础题.17、;【分析】如图(见解析),连接CO、DO,并延长DO交CF于H,由垂径定理可知CE,在中,可以求出半径CO的长;又由=和垂径定理得,根据圆周角定理可得,从而可知,在中可求出FG,也就可求得CF的长度;在中利用勾股定理求出DH,再求出,同样地,在中利用余弦函数求出OG,从而可求得.【详解】,,,(垂径定理)连接,设,则在中,解得,连接DO并延长交CF于H=,由垂径定理可知,是所对圆周角,是所对圆心角,且=2,,由勾股定理得:,.【点睛】本题考查了垂径定理、圆周角定理、直角三角形中的余弦三角函数,通过构造辅助线,利用垂径定理和圆周角定理是解题关键.18、0.1【分析】利用频数统计图可得,在试验中图钉针尖朝上的频率在0.1波动,然后利用频率估计概率可得图钉针尖朝上的概率.【详解】解:由统计图得,在试验中得到图钉针尖朝上的频率在0.1波动,所以可根据计图钉针尖朝上的概率为0.1.【点睛】本题考查了频数统计图用频率估计概率,解决本题的关键是正确理解题意,明确频率和概率之间的联系和区别.三、解答题(共66分)19、(1);(2)y=;(3)预备建设资金220000元不够用,见解析【分析】(1)根据矩形和正方形的性质解答即可;
(2)利用矩形的面积公式和正方形的面积公式解答即可;
(3)利用二次函数的性质和最值解答即可.【详解】解:(1)设矩形的较短边的长为米,,根据图形特点.(2)由题意知:化简得:(百元)(3)由题知:,解得,当x=4时,,当x=6时,,将函数解析式变形:,当时,y随x的增加而减少,所以(百元),而,预备建设资金220000元不够用.【点睛】此题主要考查了二次函数的应用以及配方法求最值和正方形的性质等知识,正确得出各部分的边长是解题关键.20、(1)见解析;(2)见解析.【分析】(1)由等积式转化为比例式,再由相似三角形的判定定理,证明△ABD∽CBA,从而得出∠ADB=∠CAB=90°;(2)过点D作DG∥AB交CF于点G,由E为AD的中点,可得△DGE≌△AFE,得出AF=DG,再由平行线分线段成比例可得出结果.【详解】证明:(1)∵AB2=BD·BC,∴又∠B=∠B,∴△ABD∽CBA,∴∠ADB=∠CAB=90°,∴AD⊥BC.(2)过点D作DG∥AB交CF于点G,∵E为AD的中点,∴易得△DGE≌△AFE,∴AF=DG,又AF:BF=1:3,∴DG:BF=1:3.∵DG∥BF,∴DG:BF=CD:BC=1:3,∴CD:DB=1:2.【点睛】本题考查相似三角形的判定与性质,遇到比例式或等积式就要考虑转化为三角形相似来解决问题.21、(1);(2)k=1【分析】(1)由△≥1,求出k的范围;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,代入等式求解即可.【详解】解:(1)∵一元二次方程x2+(2k+1)x+k2=1有实数根,∴△=(2k+1)2﹣4k2≥1,∴;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,∴2x1x2﹣x1﹣x2=2k2+2k+1=1,∴k=1或k=﹣1,∵;∴k=1.【点睛】本题考查根与系数的关系;熟练掌握一元二次方程根与系数的关系,并能用判别式判断根的存在情况是解题的关键.22、(1)500件;(2)利润的最大值为1;(3)每月的成本最少需要10000元.【分析】(1)设函数关系式为y=kx+b,把(40,600),(75,250)代入,列方程组即可.(2)根据利润=每件的利润×销售量,列出式子即可.(3)思想列出不等式求出x的取值范围,设成本为S,构建一次函数,利用二次函数的性质即可解决问题.【详解】(1)设函数关系式为y=kx+b,把(40,600),(75,250)代入可得,解得:,∴y=﹣10x+1000,当x=50时,y=﹣10×50+1000=500(件);(2)根据题意得,W=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+1.当x=70时,利润的最大值为1;(3)由题意,解得:60≤x≤75,设成本为S,∴S=40(﹣10x+1000)=﹣400x+40000,∵﹣400<0,∴S随x增大而减小,∴x=75时,S有最小值=10000元,答:每月的成本最少需要10000元.【点睛】本题考查了二次函数、一次函数的实际应用,不等式组的应用等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.23、【分析】根据题意画出树状图,然后结合概率的计算公式求解即可.【详解】解:画树状图如下:由树状图可知,共有12种等可能结果,其中能围成三角形的结果共有10种,所以能搭成三角形的概率为=.【点睛】本题考查了三角形三条边的关系及概率的计算,,解题的关键是正确画出树状图,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.24、(1)见解析;(2)12【分析】(1)连接OD,AD是∠CAB的平分线,以及OA=DO,推出∠CAD=∠ODA,进而得出OD∥AC,最后根据∠C=90°可得出结论;
(2)因为∠B=30°,所以∠CAB=60°,结合(1)可得AC∥OD,证明△ODE是等边三角形,进而求出OA的长.再在Rt△BOD中,利用含30°直角三角形的性质求出BO的长,从而得出结论.【详解】解:(1)证明:连接平分∠CAB,.在中,,..∴AC∥OD.中,,,直线为圆的切线;(2)解:如图,中,,,∴.由(1)可得:AC∥OD,,为等边三角形,,.由(1)可得,又,在中,..【点睛】本题考查的是切线的判定与性质,等边三角形的判定,含30°的直角三角形的性质等知识,在解答此类题目时要注意添加辅助线,构造直角三角形.25、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).【分析】(1)因为点A(1,0),点C(0,1)在抛物线y=−x2+bx+c上,可代入确定b、c的值;(2)过点D作DH⊥x轴,设D(t,-t2+2t+1),先利用图象上点的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用顶点坐标求最值即可;(1)分两种情况讨论:①过点A作AE1⊥AC,交抛物线于点E1,交y轴于点F,连接E1C,求出点F的坐标,再求直线AE的解析式为y=x−1,再与二次函数的解析式联立方程组求解即可;②过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2,求出直线CM的解析式为y=x+1,再与二次函数的解析式联立方程组求解即可.【详解】(1)解:∵二次函数y=-x2+bx+c与x轴的交点为点A(1,0)与y轴交于点C(0,1)∴解之得∴这个二次函数的解析式为y=-x2+2x+1(2)解:如图,设D(t,-t2+2t+1),过点D作DH⊥x轴,垂足为H,则S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴当t=时,△ACD的面积有最大值此时-t2+2t+1=∴抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).理由如下:有两种情况:①如图,过点A作AE1⊥AC,交抛物线于点E1、交y轴于点F,连接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴点F的坐标为(0,−1).设直线AE的解析式为y=kx+b,将(0,−1),(1,0)代入y=kx+b得:解得∴直线AE的解析式为y=x−1,由解得或∴点E1的坐标为(−2,−5).②如图,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家政行业家居清洁培训总结
- 2025-2030全球合成油田缓蚀剂行业调研及趋势分析报告
- 2025年全球及中国车辆液压制动管路行业头部企业市场占有率及排名调研报告
- 2025年全球及中国流体摄像三脚架云台行业头部企业市场占有率及排名调研报告
- 2025年全球及中国浓缩杏汁行业头部企业市场占有率及排名调研报告
- 2025-2030全球帐篷地钉行业调研及趋势分析报告
- 2025年全球及中国有隔板高效空气过滤器行业头部企业市场占有率及排名调研报告
- 2025年全球及中国个人护理用辛酰甘氨酸行业头部企业市场占有率及排名调研报告
- 2025-2030全球单摆铣头行业调研及趋势分析报告
- 山东省临沂一中高三9月月考语文(文科)试题(含答案)
- 2025年个人土地承包合同样本(2篇)
- (完整版)高考英语词汇3500词(精校版)
- 2024年联勤保障部队第九四〇医院社会招聘笔试真题
- 网络货运行业研究报告
- 人教版七年级英语上册单元重难点易错题Unit 2 单元话题完形填空练习(含答案)
- 00015-英语二自学教程-unit1
- 新版建设工程工程量清单计价标准解读
- 运动技能学习PPT
- 岭南版三年级美术下册教学工作计划
- 应急装备、应急物资台账(较详细)
- 运动技能学习与控制
评论
0/150
提交评论