2022届河北省石家庄市行唐启明中学高三3月份模拟考试数学试题含解析_第1页
2022届河北省石家庄市行唐启明中学高三3月份模拟考试数学试题含解析_第2页
2022届河北省石家庄市行唐启明中学高三3月份模拟考试数学试题含解析_第3页
2022届河北省石家庄市行唐启明中学高三3月份模拟考试数学试题含解析_第4页
2022届河北省石家庄市行唐启明中学高三3月份模拟考试数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B2.已知无穷等比数列的公比为2,且,则()A. B. C. D.3.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.4.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.5.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-36.已知是边长为的正三角形,若,则A. B.C. D.7.已知集合,,则()A. B.C.或 D.8.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.9.已知直线和平面,若,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要10.在中,角、、的对边分别为、、,若,,,则()A. B. C. D.11.已知命题:R,;命题:R,,则下列命题中为真命题的是()A. B. C. D.12.已知数列为等比数列,若,且,则()A. B.或 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,是的角平分线,设,则实数的取值范围是__________.14.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有____人.15.已知等差数列的前项和为,且,则______.16.函数的定义域是____________.(写成区间的形式)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.18.(12分)在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)设点;若、、成等比数列,求的值19.(12分)据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.20.(12分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1.(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.22.(10分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】试题分析:集合考点:集合间的关系2.A【解析】

依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,,解得,所以,,故选A。【点睛】本题主要考查无穷等比数列求和公式的应用。3.B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.4.A【解析】

根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.5.D【解析】

设,,设:,联立方程得到,计算得到答案.【详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.6.A【解析】

由可得,因为是边长为的正三角形,所以,故选A.7.D【解析】

首先求出集合,再根据补集的定义计算可得;【详解】解:∵,解得∴,∴.故选:D【点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.8.B【解析】

由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.9.B【解析】

由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,,当时,存在,,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.10.B【解析】

利用两角差的正弦公式和边角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【详解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.11.B【解析】

根据,可知命题的真假,然后对取值,可得命题的真假,最后根据真值表,可得结果.【详解】对命题:可知,所以R,故命题为假命题命题:取,可知所以R,故命题为真命题所以为真命题故选:B【点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.12.A【解析】

根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设,,,由,用面积公式表示面积可得到,利用,即得解.【详解】设,,,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.14.750【解析】因为0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00515.【解析】

根据等差数列的性质求得,结合等差数列前项和公式求得的值.【详解】因为为等差数列,所以,解得,所以.故答案为:【点睛】本小题考查等差数列的性质,前项和公式的应用等基础知识;考查运算求解能力,应用意识.16.【解析】

要使函数有意义,需满足,即,解得,故函数的定义域是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)见解析【解析】

(1)连结AC交BD于点O,连结OE,利用三角形中位线可得AP∥OE,从而可证AP∥平面EBD;(2)先证明BD⊥平面PCD,再证明PC⊥平面BDE,从而可证BE⊥PC.【详解】证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形∴O为AC中点,又E为PC中点,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD

;(2)∵△PCD为正三角形,E为PC中点所以PC⊥DE因为平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【点睛】本题主要考查空间位置关系的证明,线面平行一般转化为线线平行来证明,直线与直线垂直通常利用线面垂直来进行证明,侧重考查逻辑推理的核心素养.18.(1)曲线的直角坐标方程为,直线的普通方程为;(2)【解析】

(1)由极坐标与直角坐标的互化公式和参数方程与普通方程的互化,即可求解曲线的直角坐标方程和直线的普通方程;(2)把的参数方程代入抛物线方程中,利用韦达定理得,,可得到,根据因为,,成等比数列,列出方程,即可求解.【详解】(1)由题意,曲线的极坐标方程可化为,又由,可得曲线的直角坐标方程为,由直线的参数方程为(为参数),消去参数,得,即直线的普通方程为;(2)把的参数方程代入抛物线方程中,得,由,设方程的两根分别为,,则,,可得,.所以,,.因为,,成等比数列,所以,即,则,解得解得或(舍),所以实数.【点睛】本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.19.(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解析】

(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,,随机变量X的分布列如下:【点睛】本题考查数据的处理以及离散型随机变量的分布列与数学期望,审清题意,细心计算,属基础题.20.(1)(2)是为定值,的横坐标为定值【解析】

(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,,.由消去并整理得,∴,.直线的方程为:,直线的方程为:.联系方程,解得,又因为.所以.所以的横坐标为定值.【点睛】本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运算求解能力,属于中档题.21.(1)的极坐标方程为,的直角坐标方程为/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论