版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为()A. B. C. D.2.学业水平测试成绩按照考生原始成绩从高到低分为、、、、五个等级.某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班()A.物理化学等级都是的学生至多有人B.物理化学等级都是的学生至少有人C.这两科只有一科等级为且最高等级为的学生至多有人D.这两科只有一科等级为且最高等级为的学生至少有人3.设复数满足,在复平面内对应的点为,则()A. B. C. D.4.已知函数的图象向左平移个单位后得到函数的图象,则的最小值为()A. B. C. D.5.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.设函数的定义域为,命题:,的否定是()A., B.,C., D.,7.设等差数列的前n项和为,若,则()A. B. C.7 D.28.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.9.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则10.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.11.已知复数满足,则的值为()A. B. C. D.212.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,常数项为______;系数最大的项是______.14.已知单位向量的夹角为,则=_________.15.已知函数为奇函数,,且与图象的交点为,,…,,则______.16.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.18.(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.19.(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,,求直线的斜率.20.(12分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.21.(12分)定义:若数列满足所有的项均由构成且其中有个,有个,则称为“﹣数列”.(1)为“﹣数列”中的任意三项,则使得的取法有多少种?(2)为“﹣数列”中的任意三项,则存在多少正整数对使得且的概率为.22.(10分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【题目详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,,由图象可知选B.故选:B【答案点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.2、D【答案解析】
根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学生人数,结合表格中的数据进行分析,可得出合适的选项.【题目详解】根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),表格变为:物理化学对于A选项,物理化学等级都是的学生至多有人,A选项错误;对于B选项,当物理和,化学都是时,或化学和,物理都是时,物理、化学都是的人数最少,至少为(人),B选项错误;对于C选项,在表格中,除去物理化学都是的学生,剩下的都是一科为且最高等级为的学生,因为都是的学生最少人,所以一科为且最高等级为的学生最多为(人),C选项错误;对于D选项,物理化学都是的最多人,所以两科只有一科等级为且最高等级为的学生最少(人),D选项正确.故选:D.【答案点睛】本题考查合情推理,考查推理能力,属于中等题.3、B【答案解析】
设,根据复数的几何意义得到、的关系式,即可得解;【题目详解】解:设∵,∴,解得.故选:B【答案点睛】本题考查复数的几何意义的应用,属于基础题.4、A【答案解析】
首先求得平移后的函数,再根据求的最小值.【题目详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以.又,所以的最小值为.故选:A【答案点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.5、A【答案解析】
根据向量共线的性质依次判断充分性和必要性得到答案.【题目详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【答案点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.6、D【答案解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【题目详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【答案点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.7、B【答案解析】
根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【题目详解】因为,所以,所以,所以,故选:B【答案点睛】本题主要考查等差数列的性质及前项和公式,属于基础题.8、A【答案解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.9、D【答案解析】
利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【题目详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【答案点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理.一般可借助正方体模型,以正方体为主线直观感知并准确判断.10、C【答案解析】
根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【题目详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【答案点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.11、C【答案解析】
由复数的除法运算整理已知求得复数z,进而求得其模.【题目详解】因为,所以故选:C【答案点睛】本题考查复数的除法运算与求复数的模,属于基础题.12、A【答案解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【题目详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A【答案点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【题目详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,,,因此,展开式中系数最大的项为.故答案为:;.【答案点睛】本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.14、【答案解析】
因为单位向量的夹角为,所以,所以==.15、18【答案解析】
由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可.【题目详解】函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称,.故答案为:18【答案点睛】本题考查了函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键,属于中档题.16、【答案解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)是,【答案解析】
(1)设,根据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理和点满足椭圆方程,求出,,再利用焦半径公式表示出,进而求出周长为定值.【题目详解】(1)设,因为,即则,即,因为均在上,代入得,解得,所以椭圆的方程为;(2)由(1)得,作出示意图,设切点为,则,同理即,所以,又,则的周长,所以周长为定值.【答案点睛】标准方程的求解,椭圆中的定值问题,考查焦半径公式的运用,考查逻辑推理能力和运算求解能力,难度较难.18、(1);(2)从而的分布列为012;(3).【答案解析】
(1)运用概率的计算公式求概率分布,再运用数学期望公式进行求解;(2)借助题设条件运用贝努力公式进行分析求解:(1)记所选取额两家商家加入团购网站的数量相等为事件,则,所以他们加入团购网站的数量不相等的概率为.(2)由题,知的可能取值分别为0,1,2,,,从而的分布列为012.(3)所调查的50家商家中加入了两个团购网站的商家有25家,将频率视为概率,则从市中任取一家加入团购网站的商家,他同时加入了两个团购网站的概率为,所以,所以事件“”的概率为.19、(1)(2)0【答案解析】
(1)根据题意,设直线,与联立,得,再由弦长公式,求解.(2)设,根据直线的斜率为1,则,得到,再由,所以线段中点的纵坐标为,然后直线的方程与直线的方程联立解得交点H的纵坐标,说明直线轴,直线的斜率为0.【题目详解】(1)依题意,,则直线,联立得;设,则,解得,故抛物线的方程为.(2),因为直线的斜率为1,则,所以,因为,所以线段中点的纵坐标为.直线的方程为,即①直线的方程为,即②联立①②解得即点的纵坐标为,即直线轴,故直线的斜率为0.如果直线的斜率不存在,结论也显然成立,综上所述,直线的斜率为0.【答案点睛】本题考查抛物线的方程、直线与抛物线的位置关系,还考查推理论证能力以及化归与转化思想,属于中档题.20、(Ⅰ)或(Ⅱ)12【答案解析】
(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.【题目详解】(1)设数列的公比为,,,或.(2)时,,解得;时,,无正整数解;综上所述.【答案点睛】本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.21、(1)16;(2)115.【答案解析】
(1)易得使得的情况只有“”,“”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“”共有种,“”共有种.再根据古典概型的方法可知,利用组合数的计算公式可得,当时根据题意有,共个;当时求得,再根据换元根据整除的方法求解满足的正整数对即可.【题目详解】解:(1)三个数乘积为有两种情况:“/r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学综合练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规押题练习试题B卷含答案
- 重庆市西南大学附中2024-2025学年高一上定时检测(一)语文试题含答案
- 2024年度xx村监测对象风险消除民主评议会议记录
- 湖南省长沙市长郡郡维中学2022-2023学年九年级上学期入学英语试卷(含答案)
- 2024年长沙市事业单位招聘计算机岗位专业知识试题
- 2024年培训学校业务外包协议
- 2024年工程咨询服务具体协议样式
- 2024医疗销售企业合作协议样本
- 2024房屋建筑施工劳务协议详例
- 养老机构(养老院)全套服务管理实用手册
- 企业文化管理第八章企业文化的比较与借鉴
- WST311-2023《医院隔离技术标准》
- 《缕书香伴我同行》课件
- 建设项目竣工环境保护验收管理办法
- 100道解方程 计算题
- 赛事承办服务投标方案(技术方案)
- 概率论(华南农业大学)智慧树知到课后章节答案2023年下华南农业大学
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 我们的出行方式 (教学设计)2022-2023学年综合实践活动四年级上册 全国通用
评论
0/150
提交评论