2022年山东省东营邹平县联考九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2022年山东省东营邹平县联考九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2022年山东省东营邹平县联考九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2022年山东省东营邹平县联考九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2022年山东省东营邹平县联考九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=6002.下列事件中,是随机事件的是()A.两条直线被第三条直线所截,同位角相等B.任意一个四边形的外角和等于360°C.早上太阳从西方升起D.平行四边形是中心对称图形3.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.164.一个三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长为()A. B. C.10或11 D.不能确定5.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.6.在正方形网格中,的位置如图所示,则的值为()A. B. C. D.7.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34° B.46° C.56° D.66°8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A. B. C. D.9.在下列四个函数中,当时,随的增大而减小的函数是()A. B. C. D.10.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35° B.45° C.55° D.65°二、填空题(每小题3分,共24分)11.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.12.如图,中,,以点为圆心的圆与相切,则的半径为________.13.方程的根是____.14.分解因式:a2b﹣b3=.15.已知关于x的一元二次方程两根是分别α和β则m=_____,α+β=_____.16.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为______.17.如图,在中,,若,则的值为_________18.如图,将绕点顺时针旋转得到,点的对应点是点,直线与直线所夹的锐角是_______.三、解答题(共66分)19.(10分)如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.(1)证明:MD//OP;(2)求证:PD是⊙O的切线;(3)若AD24,AMMC,求的值.20.(6分)如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,求∠C.21.(6分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)22.(8分)如图,在平面直角坐标系xOy中,直线和抛物线W交于A,B两点,其中点A是抛物线W的顶点.当点A在直线上运动时,抛物线W随点A作平移运动.在抛物线平移的过程中,线段AB的长度保持不变.应用上面的结论,解决下列问题:在平面直角坐标系xOy中,已知直线.点A是直线上的一个动点,且点A的横坐标为.以A为顶点的抛物线与直线的另一个交点为点B.(1)当时,求抛物线的解析式和AB的长;(2)当点B到直线OA的距离达到最大时,直接写出此时点A的坐标;(3)过点A作垂直于轴的直线交直线于点C.以C为顶点的抛物线与直线的另一个交点为点D.①当AC⊥BD时,求的值;②若以A,B,C,D为顶点构成的图形是凸四边形(各个内角度数都小于180°)时,直接写出满足条件的的取值范围.23.(8分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:速度v(千米/小时)流量q(辆/小时)(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)①;②;③(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?24.(8分)为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.(1)求甲、乙两种篮球每个的售价分别是多少元?(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?25.(10分)2019年12月27日,我国成功发射了“长征五号”遥三运载火箭.如图,“长征五号”运载火箭从地面处垂直向上发射,当火箭到达处时,从位于地面处的雷达站测得此时仰角,当火箭继续升空到达处时,从位于地面处的雷达站测得此时仰角,已知,.(1)求的长;(2)若“长征五号”运载火箭在处进行“程序转弯”,且,求雷达站到其正上方点的距离.26.(10分)如图所示,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,CD=,求劣弧BD的长;(3)若AC=2,BD=3,求AE的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】设快递量平均每年增长率为,根据我国2018年及2020年的快递业务量,即可得出关于的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=1.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、A【分析】根据随机事件的概念对每一事件进行分析.【详解】选项A,只有当两条直线为平行线时,同位角才相等,故不确定为随机事件.选项B,不可能事件.选项C,不可能事件选项D,必然事件.故选A【点睛】本题考查了随机事件的概念.3、D【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.4、B【分析】直接利用因式分解法解方程,进而利用三角形三边关系得出答案.【详解】∵,

∴,

解得:,

∵一个三角形的两边长为3和5,

∴第三边长的取值范围是:,即,

则第三边长为:3,

∴这个三角形的周长为:.

故选:B.【点睛】本题主要考查了因式分解法解方程以及三角形三边关系,正确掌握三角形三边关系是解题关键.5、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.6、A【分析】延长AB至D,使AD=4个小正方形的边长,连接CD,先证出△ADC是直角三角形和CD的长,即可求出的值.【详解】解:延长AB至D,使AD=4个小正方形的边长,连接CD,如下图所示,由图可知:△ADC是直角三角形,CD=3个小正方形的边长根据勾股定理可得:AC=个小正方形的边长∴故选A.【点睛】此题考查的是求一个角的正弦值,掌握构造直角三角形的方法是解决此题的关键.7、C【解析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.【点睛】此题考查了圆周角定理以及直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A.【点睛】本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、B【分析】分别根据正比例函数、反比例函数、一次函数和二次函数的性质逐项判断即得答案.【详解】解:A、,当时,函数是随着增大而增大,故本选项错误;B、,当时,函数是随着增大而减小,故本选项正确;C、,∴当时,函数是y随着增大而增大,故本选项错误;D、函数,当时,随着增大而减小,当时,随着增大而增大,故本选项错误.故选:B.【点睛】本题考查了初中阶段三类常见函数的性质,属于基础题型,熟练掌握一次函数、反比例函数和二次函数的性质是解题的关键.10、C【解析】试题分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,又由直角三角形两锐角互余的关系即可求得∠B的度数:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选C.考点:1.圆周角定理;2.直角三角形两锐角的关系.二、填空题(每小题3分,共24分)11、1【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为1.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为1,故答案为:1.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.12、【解析】试题解析:在△ABC中,∵AB=5,BC=3,AC=4,如图:设切点为D,连接CD,∵AB是C的切线,∴CD⊥AB,∴AC⋅BC=AB⋅CD,即∴的半径为故答案为:点睛:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.13、,【分析】把方程变形为,把方程左边因式分解得,则有y=0或y-5=0,然后解一元一次方程即可.【详解】解:,∴,∴y=0或y-5=0,∴.故答案为:.【点睛】此题考查了解一元二次方程-因式分解法,其步骤为:移项,化积,转化和求解这几个步骤.14、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【详解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案为b(a+b)(a﹣b).15、-21【分析】首先根据一元二次方程的概念求出m的值,然后根据根与系数的关系即可得出答案.【详解】∵是一元二次方程,,解得,.两根是分别α和β,,故答案为:-2,1.【点睛】本题主要考查一元二次方程,掌握一元二次方程的概念及根与系数的关系是解题的关键.16、4(1+x)2=5.1【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x,根据“由2010年的年收入4万元增加到2012年年收入5.1万元”,即可得出方程.【详解】设每年的年增长率为x,根据题意得:4(1+x)2=5.1.故答案为4(1+x)2=5.1.【点睛】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).17、【分析】根据相似三角形的性质,得出,将AC、AB的值代入即可得出答案.【详解】即DC=故答案为:.【点睛】本题考查了相似三角形的性质,熟练掌握性质定理是解题的关键.18、【分析】延长DE交AC于点O,延长BC交DE的延长线于点F,然后根据旋转的性质分别求出∠EAC=55°,∠AED=∠ACB,再根据对顶角相等,可得出∠DFB=∠EAC=55°.【详解】解:延长DE交AC于点O,延长BC交DE的延长线于点F由题意可得:∠EAC=55°,∠AED=∠ACB∴∠AEF=∠ACF又∵∠AOE=∠FOC∴∠DFB=∠EAC=55°故答案为:55°【点睛】本题考查旋转的性质,掌握旋转图形对应角相等是本题的解题关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据两边成比例夹角相等两三角形相似证明,然后利用平行线的判定定理即可.(2)欲证明PD是⊙O的切线,只要证明OD⊥PA即可解决问题;(3)连接CD.由(2)可知:PC=PD,由AM=MC,推出AM=2MO=2R,在Rt△AOD中,,可得,推出,推出,,由,可得,再利用全等三角形的性质求出MD即可解决问题;【详解】(1)证明:连接、、.∵,,∴,∴,∴,(2)∴,∴,,∵,∴,∴,∵,,∴,∴,∵,∴,∴,∴是的切线.(3)连接.由(1)可知:,∵,∴,在中,,∴,∴,∴,,∵,∴,∵是的中点,∴,∴点是的中点,∴,∵是的直径,∴,在中,∵,,∴,∵,∴,,∴,∴.【点睛】此题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质,解题关键在于构造辅助线,相似三角形解决问题.20、∠C=57°.【分析】此题根据圆周角与圆心角的关系求解即可.【详解】连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°.【点睛】此题考查同圆中圆周角与圆心角的关系和切线相关知识,难度一般.21、见解析.【解析】分析:首先根据题意写出已知和求证,再根据全等三角形的判定与性质,可得∠ACD与∠BCD的关系,根据平行四边形的邻角互补,可得∠ACD的度数,根据矩形的判定,可得答案.详解:已知:如图,在□ABCD中,AC=BD.求证:□ABCD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC,在△ADC和△BCD中,∵,∴△ADC≌△BCD,∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°,∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.点睛:本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.22、(1);(2);(3)①;②的取值范围是或.【分析】(1)根据t=3时,A的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B的坐标可以求得;

(2)△OAB的面积一定,当OA最小时,B到OA的距离即△OAB中OA边上的高最大,此时OA⊥AB,据此即可求解;

(3)①方法一:设AC,BD交于点E,直线l1:y=x-2,与x轴、y轴交于点P和Q(如图1).由点D在抛物线C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2),根据BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,可得满足条件的t的取值范围.【详解】解:(1)∵点A在直线l1:y=x-2上,且点A的横坐标为3,

∴点A的坐标为(3,-2),

∴抛物线C1的解析式为y=-x2-2,

∵点B在直线l1:y=x-2上,

设点B的坐标为(x,x-2).

∵点B在抛物线C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵点A与点B不重合,

∴点B的坐标为(-1,-3),

∴由勾股定理得AB=.

(2)当OA⊥AB时,点B到直线OA的距离达到最大,则OA的解析式是y=-x,则

,解得:,

则点A的坐标为(1,-1).(3)①方法一:设,交于点,直线,与轴、轴交于点和(如图1).则点和点的坐标分别为,.∴.∵.∵轴,∴轴.∴.∵,,∴.∵点在直线上,且点的横坐标为,∴点的坐标为.∴点的坐标为.∵轴,∴点的纵坐标为.∵点在直线上,∴点的坐标为.∴抛物线的解析式为.∵,∴点的横坐标为,∵点在直线上,∴点的坐标为.∵点在抛物线上,∴.解得或.∵当时,点与点重合,∴方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2)

则∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在抛物线C1随顶点A平移的过程中,

AB的长度不变,∠ABN的大小不变,

∴BN和AN的长度也不变,即点A与点B的横坐标的差以及纵坐标的差都保持不变.

同理,点C与点D的横坐标的差以及纵坐标的差也保持不变.

由(1)知当点A的坐标为(3,-2)时,点B的坐标为(-1,-3),

∴当点A的坐标为(t,t-2)时,点B的坐标为(t-1,t-3).

∵AC∥x轴,

∴点C的纵坐标为t-2.

∵点C在直线l2:y=x上,

∴点C的坐标为(2t-4,t-2).

令t=2,则点C的坐标为(3,3).

∴抛物线C2的解析式为y=x2.

∵点D在直线l2:y=x上,

∴设点D的坐标为(x,).

∵点D在抛物线C2:y=x2上,

∴=x2.

解得x=或x=3.

∵点C与点D不重合,

∴点D的坐标为(,).

∴当点C的坐标为(3,3)时,点D的坐标为(,).

∴当点C的坐标为(2t-4,t-2)时,点D的坐标为(2t−,t−).

∵BD⊥AC,

∴t−1=2t−.

∴t=.

②t的取值范围是t<或t>4.

设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,以A,B,C,D为顶点构成的图形不是凸四边形.

【点睛】本题考查了二次函数综合题,掌握待定系数法求得函数的解析式,点到直线的距离,平行于坐标轴的点的特点,方程思想的运用是解题的关键.23、(1)答案为③;(2)v=30时,q达到最大值,q的最大值为1;(3)84<k≤2【分析】(1)根据一次函数,反比例函数和二次函数的性质,结合表格数据,即可得到答案;(2)把二次函数进行配方,即可得到答案;(3)把v=12,v=18,分别代入二次函数解析式,求出q的值,进而求出对应的k值,即可得到答案.【详解】(1)∵,q随v的增大而增大,∴①不符合表格数据,∵,q随v的增大而减小,∴②不符合表格数据,∵,当q≤30时,q随v的增大而增大,q≥30时,q随v的增大而减小,∴③基本符合表格数据,故答案为:③;(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1,且﹣2<0,∴当v=30时,q达到最大值,q的最大值为1.答:当该路段的车流速度为30千米/小时,流量达到最大,最大流量是1辆/小时.(3)当v=12时,q=﹣2×122+120×12=1152,此时k=1152÷12=2,当v=18时,q=﹣2×182+120×18=1512,此时k=1512÷18=84,∴84<k≤2.答:当84<k≤2时,该路段将出现轻度拥堵.【点睛】本题主要考查二次函数的实际应用,理解二次函数的性质,是解题的关键.24、(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)设学校计划购进甲种篮球m个,则学校计划购进乙种篮球(100−m)个;根据题意列不等式即可得到结论;(3)设购买跳绳a根,毽子b个,根据题意得方程10a+5b=290,求得b=58−2a>0,解不等式即可得到结论..【详解】(1)设甲种篮球每个的售价为元,乙种篮球每个的售价为元.依题意,得解得答:甲种篮球每个的售价为30元,乙种篮球每个的售价为70元.(2)设学校购进甲种篮球个,则购进乙种篮球个.由已知,得.解得.又,∴.设购进甲、乙两种篮球学校花的钱为元,则,∴当时,取最小值,花最少钱为2990元.花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个.(3)设购买跳绳根,毽子个,则,.解得.∵为正整数,∴有28种进货方案.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答问题.25、(1)km;(2)【分析】(1)设为,根据题意可用含x的代数式依次表示出AM、AC、AN的长,然后在直角△CAN中利用解直角三角形的知识即可求出x的值,进而可得答案;(2)由(1)的结果可得CN的长,作,垂足为点,如图,根据题意易得∠DCN和∠DNC的度数,设HN=y,则可用y的代数式表示出CH,根据CH+HN=CN可得关于y的方程,解方程即可求出y的值,进一步即可求出结果.【详解】解:(1)设为,∵,∴,则,在中,∵,AC=AB+BC=x+40,AN=AM+MN=x+1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论