版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesµ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andµinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andµInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andµataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform(12-73)ValuesoftheconstantsbandnforvariousconditionsaregiveninTable12.4NaturalconvectiontoairfromAdoublepipeheatexchangerisusedtocondensethesaturatedtoluenevapor(2000kg/h)intosaturatedliquid.Thecondensationtemperatureandlatentheatoftolueneare110oCand363kJ/kg,respectively.Thecoldwaterat20oC(inlettemperature)and5000kg/hgoesthroughthepipe(di=50mm)fullyturbulently.Iftheindividualheattransfercoefficienthiofwatersideis2100w/(m2K),andheatresistancesofpipewallaswellastoluenesidearemuchlargerthanthatofwaterside(thismeansbothresistancescanbeignored),find:Outlettemperatureofcoldwater,inoC.Pipelengthofexchanger.Inorderformassflowrateoftoluenetobedouble,ifthemassflowrateofcoldwateratthesameinlettemperature(20oC)isdouble,whatisthepipelengthofnewexchangertoberequired?AdoublepipeheatexchangeriSolution:Heatbalanceq=m1=m2Cp(Tcb-Tca)2000363=50004.19(Tcb-20)(1)OutlettemperatureofcoldwaterTcb=54.65oC(2)U=h(fromtheproblem)∆T1=110-54.65=55.35,∆T2=110-20=90∆T=(∆T1+∆T2)/2=72.68(since∆T2/∆T1<2)L=q/(Ud∆T)=20003631000/3600/(21000.0572.68)=8.42m(3)q’=2qm1=2m2Cp(T’cb-Tca)OutlettemperatureofcoldwaterTcb=54.65oC∆T’=(∆T1+∆T2)/2=72.68Fullydevelopedturbulentflow,hRe0.8~m0.8~u0.8h’/h=20.8,h’=1.74hq’=1.74hdL’∆T’=2m1q=hdL∆T=m1L’/L=2/1.74soL’=28.42/1.74=9.68mSolution:Heatbalanceq=m1=mAsinglepass(1-1)shell-tubeexchangerismadeofmany252.5mmtubes.Organicsolution,u=0.5m/s,m(massflowrate)=15000kg/h,Cp=1.76kJ/kg.oC,=858kg/m3,passesthroughthetube.Thetemperaturechangesfrom20to50oC.Thesaturatedvaporat130oCcondensestothesaturatedwater,whichgoesthroughtheshell.Theindividualheattransfercoefficientshiandhointhepipeandshellare700andis10000W/m2oC,respectively.Thethermalconductivitykofpipewallis45W/m.oC.Iftheheatlossandresistancesoffoulingcanbeignored,find(1)OverallheattransfercoefficientUo.(basedonoutsidetubearea)andLMTD.(2)Heattransferarea,numberofpipesandlengthofpipes.Asinglepass(1-1)shell-tube化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesµ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andµinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andµInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andµataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云南玉溪宸才人力资源咨询管理有限公司招聘消防监控值班员考试参考题库及答案解析
- 2025年航空安保训练理论笔试及答案
- 2025年报名教资的笔试及答案
- 2025年事业单位无准备考试及答案
- 2026年房地产市场动态分析与未来趋势
- 2025年西安退伍军人事业编考试及答案
- 2026山东女子学院幼教集团济南市槐荫区弘信幼儿园招聘笔试备考试题及答案解析
- 2025年贵州省都匀市人事考试及答案
- 2026年哈尔滨五常市广源农林综合开发有限公司招聘工作人员5人笔试备考题库及答案解析
- 2025年产教融合办笔试及答案
- 2026陕西省森林资源管理局局属企业招聘(55人)参考题库及答案1套
- 免疫治疗相关甲状腺功能亢进的分级
- 浙江省杭州市拱墅区2024-2025学年四年级上册期末考试数学试卷(含答案)
- 2024-2025学年七上期末数学试卷(原卷版)
- 2025-2026学年苏教版五年级上册数学期末必考题检测卷(含答案)
- 新《增值税法实施条例》逐条解读课件
- 2026年广西职教高考5套语文模拟试卷试题及逐题答案解释和5套试题的综合分析报告
- 福建省福州市2024-2025学年高二上学期期末质量检测化学试卷(含答案)
- 泌尿系统疾病诊治
- 2025-2026学年大象版四年级上册科学全册重点知识点
- 治疗失眠症的认知行为疗法训练
评论
0/150
提交评论