




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesµ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andµinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andµInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andµataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform(12-73)ValuesoftheconstantsbandnforvariousconditionsaregiveninTable12.4NaturalconvectiontoairfromAdoublepipeheatexchangerisusedtocondensethesaturatedtoluenevapor(2000kg/h)intosaturatedliquid.Thecondensationtemperatureandlatentheatoftolueneare110oCand363kJ/kg,respectively.Thecoldwaterat20oC(inlettemperature)and5000kg/hgoesthroughthepipe(di=50mm)fullyturbulently.Iftheindividualheattransfercoefficienthiofwatersideis2100w/(m2K),andheatresistancesofpipewallaswellastoluenesidearemuchlargerthanthatofwaterside(thismeansbothresistancescanbeignored),find:Outlettemperatureofcoldwater,inoC.Pipelengthofexchanger.Inorderformassflowrateoftoluenetobedouble,ifthemassflowrateofcoldwateratthesameinlettemperature(20oC)isdouble,whatisthepipelengthofnewexchangertoberequired?AdoublepipeheatexchangeriSolution:Heatbalanceq=m1=m2Cp(Tcb-Tca)2000363=50004.19(Tcb-20)(1)OutlettemperatureofcoldwaterTcb=54.65oC(2)U=h(fromtheproblem)∆T1=110-54.65=55.35,∆T2=110-20=90∆T=(∆T1+∆T2)/2=72.68(since∆T2/∆T1<2)L=q/(Ud∆T)=20003631000/3600/(21000.0572.68)=8.42m(3)q’=2qm1=2m2Cp(T’cb-Tca)OutlettemperatureofcoldwaterTcb=54.65oC∆T’=(∆T1+∆T2)/2=72.68Fullydevelopedturbulentflow,hRe0.8~m0.8~u0.8h’/h=20.8,h’=1.74hq’=1.74hdL’∆T’=2m1q=hdL∆T=m1L’/L=2/1.74soL’=28.42/1.74=9.68mSolution:Heatbalanceq=m1=mAsinglepass(1-1)shell-tubeexchangerismadeofmany252.5mmtubes.Organicsolution,u=0.5m/s,m(massflowrate)=15000kg/h,Cp=1.76kJ/kg.oC,=858kg/m3,passesthroughthetube.Thetemperaturechangesfrom20to50oC.Thesaturatedvaporat130oCcondensestothesaturatedwater,whichgoesthroughtheshell.Theindividualheattransfercoefficientshiandhointhepipeandshellare700andis10000W/m2oC,respectively.Thethermalconductivitykofpipewallis45W/m.oC.Iftheheatlossandresistancesoffoulingcanbeignored,find(1)OverallheattransfercoefficientUo.(basedonoutsidetubearea)andLMTD.(2)Heattransferarea,numberofpipesandlengthofpipes.Asinglepass(1-1)shell-tube化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesµ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andµinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andµInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andµataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级语文下册 第六单元 24《古代诗词三首》木兰诗教学设计1 苏教版
- 昆明机场施工方案
- 安全生产举报奖励制度绩效指标
- 2024年5月保险业经营情况表
- 2024考公热点词汇
- 医院科室固定资产管理
- 健康教育老师培训
- 清徐喷泉施工方案
- 七年级体育 体育与健康教育第8课教学设计 人教新课标版
- 2025专业版设施建设合同
- 2025年供水安全考试试题及答案
- 腹外疝围手术期护理
- 课件:德国鲁尔区的工业遗产与转型
- 中国近现代史纲要学习心得体会对青少年成长的影响
- 新租赁准则培训课件
- 2025年河南经贸职业学院单招职业技能测试题库带答案
- 接触网工职业技能鉴定题库(技师)题库
- 2025年二级建造师建筑实务真题及答案
- 2025年山西地质集团招聘笔试参考题库含答案解析
- 提高发票额度的合同6篇
- 《美国基本概况》课件
评论
0/150
提交评论