




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesµ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andµinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andµInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andµataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform(12-73)ValuesoftheconstantsbandnforvariousconditionsaregiveninTable12.4NaturalconvectiontoairfromAdoublepipeheatexchangerisusedtocondensethesaturatedtoluenevapor(2000kg/h)intosaturatedliquid.Thecondensationtemperatureandlatentheatoftolueneare110oCand363kJ/kg,respectively.Thecoldwaterat20oC(inlettemperature)and5000kg/hgoesthroughthepipe(di=50mm)fullyturbulently.Iftheindividualheattransfercoefficienthiofwatersideis2100w/(m2K),andheatresistancesofpipewallaswellastoluenesidearemuchlargerthanthatofwaterside(thismeansbothresistancescanbeignored),find:Outlettemperatureofcoldwater,inoC.Pipelengthofexchanger.Inorderformassflowrateoftoluenetobedouble,ifthemassflowrateofcoldwateratthesameinlettemperature(20oC)isdouble,whatisthepipelengthofnewexchangertoberequired?AdoublepipeheatexchangeriSolution:Heatbalanceq=m1=m2Cp(Tcb-Tca)2000363=50004.19(Tcb-20)(1)OutlettemperatureofcoldwaterTcb=54.65oC(2)U=h(fromtheproblem)∆T1=110-54.65=55.35,∆T2=110-20=90∆T=(∆T1+∆T2)/2=72.68(since∆T2/∆T1<2)L=q/(Ud∆T)=20003631000/3600/(21000.0572.68)=8.42m(3)q’=2qm1=2m2Cp(T’cb-Tca)OutlettemperatureofcoldwaterTcb=54.65oC∆T’=(∆T1+∆T2)/2=72.68Fullydevelopedturbulentflow,hRe0.8~m0.8~u0.8h’/h=20.8,h’=1.74hq’=1.74hdL’∆T’=2m1q=hdL∆T=m1L’/L=2/1.74soL’=28.42/1.74=9.68mSolution:Heatbalanceq=m1=mAsinglepass(1-1)shell-tubeexchangerismadeofmany252.5mmtubes.Organicsolution,u=0.5m/s,m(massflowrate)=15000kg/h,Cp=1.76kJ/kg.oC,=858kg/m3,passesthroughthetube.Thetemperaturechangesfrom20to50oC.Thesaturatedvaporat130oCcondensestothesaturatedwater,whichgoesthroughtheshell.Theindividualheattransfercoefficientshiandhointhepipeandshellare700andis10000W/m2oC,respectively.Thethermalconductivitykofpipewallis45W/m.oC.Iftheheatlossandresistancesoffoulingcanbeignored,find(1)OverallheattransfercoefficientUo.(basedonoutsidetubearea)andLMTD.(2)Heattransferarea,numberofpipesandlengthofpipes.Asinglepass(1-1)shell-tube化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件化工原理
PrinciplesofChemicalIndustry化工原理HeattransfertofluidswithoutphasechangeHeattransfertofluidswithouRegimesofheattransferinfluidsAfluidbeingheatedorcooledmaybeflowingindifferentflowpatterns.Also,thefluidmaybeflowinginforcedornaturalconvection.RegimesofheattransferinflAtordinaryvelocitiestheheatgeneratedfromfluidfrictionisnegligibleincomparisonwiththeheattransferredbetweenthefluids.AtordinaryvelocitiestheBecausethesituationsofflowattheentrancetoatubediffersfromthosewelldownstreamfromtheentrance,thevelocityfieldandassociatedtemperaturefieldmaydependonthedistancefromthetubeentranceBecausethesituationsofflowThepropertiesofthefluid-viscosity,thermalconductivity,specificheat,anddensityareimportantparametersinheattransfer.Eachofthese,especiallyviscosity,istemperature-dependent.Thepropertiesofthefluid-viHeattransferbyforcedconvectioninturbulentflowPerhapsthemostimportantsituationinheattransferistheheatflowinastreamoffluidinturbulentflow.HeattransferbyforcedconvecSincetherateofheattransferisgreaterinturbulentflowthaninlaminarflow,mostequipmentisoperatedintheturbulentrange.Sincetherateofheattran
Adimensionalanalysisoftheheatflowtoafluidinturbulentflowthroughastraightpipeyieldsdimensionlessrelations.
(12-27)AdimensionalanalysisoftThethreegroupsinEq(12-27)arerecognizedastheNusselt(Nu),Reynolds(Re),andPrandtl(Pr)numbersrespectively.ThethreegroupsinEq(12-2
TheNusseltnumberforheattransferfromafluidtoapipeorfromapipetoafluidequalsthefilmcoefficientmultipliedbyd/kThefilmcoefficienthistheaveragevalueoverthelengthofthepipeTheNusseltnumberforheat
PrandtlnumberPristheratioofthediffusivityofmomentumμ/ρ
tothethermaldiffusivityk/ρcpPrandtlnumberPristheraThePrandtlnumberofagasisusuallycloseto1(0.69forair,1.06forsteam).ThePrandtlnumberofgasesisalmostindependentoftemperaturebecausetheviscosityandthermalconductivitybothincreasewithtemperatureataboutthesamerate.ThePrandtlnumberofagasEmpiricalequationForheattransfertoandfromfluidsthatfollowthepower-lawrelation,thedimensionlessrelationbecomesTousethedimensionlessrelation,theconstantcandindexm,nmustbeknown.EmpiricalequationForheattra
Arecognizedempiricalcorrelation,forlongtubeswithsharp-edgedentrances,istheDittus-Boelterequation
Wherenis0.4whenthefluidisbeingheatedand0.3whenitisbeingcooled.Arecognizedempiricalcorr
AbetterrelationshipforturbulentflowisknownastheSieder-Tateequation
(12-32)AbetterrelationshipfortEquation(12-32)shouldnotbeusedforReynoldsnumbersbelow6000orformoltenmetals,whichhaveabnormallylowPrandtlnumber.Equation(12-32)shouldnotEffectoftubelengthNearthetubeentrance,wherethetemperaturegradientsarestillforming,thelocalcoefficienthxisgreaterthanhforfullydevelopedflow.EffectoftubelengthNeartheInentrance,hxisquitelarge,buthxvaluedropsrapidlytowardhinacomparativelyshortlengthoftube.Averagevalueofhiinturbulentflow.
Sincethetemperatureofthefluidchangesfromoneendofthetubetotheotherandfluidpropertiesµ
,cpandkareallfunctionoftemperature,thelocalvalueofhialsovariesfrompointtopointalongthetube.
Inentrance,hxisquitelaTherelationoflocalheattransfercoefficienthiandlongtubehisasfollowsWhenLapproachesinfinite,hiisclosetothehoflongtube.TherelationoflocalheattraForlaminarflow,therelationofNuandPrandReis(12.25)Forlaminarflow,therelationForgasestheeffectoftemperatureonhiissmall.Theincreaseinconductivityandheatcapacitywithtemperatureoffsettheriseinviscosity,givingaslightincreaseinhi.ForgasesForliquids
theeffectoftemperatureismuchgreaterthanforgasesbecauseoftherapiddecreaseinviscositywithrisingtemperature.ForliquidsTheeffectsofk,cp,andµinEq(12-36)allactinthesamedirection,buttheincreaseinhiwithtemperatureisduemainlytotheeffectoftemperatureonviscosity.Theeffectsofk,cp,andµInpractice,anaveragevalueofhiiscalculatedandusedasaconstantincalculatingtheoverallcoefficientU.Inpractice,anaveragevaltheaveragevalueofhiiscomputedbyevaluatingthefluidpropertiesk,cp,andµataveragefluidtemperature,definedasthearithmeticmeanbetweentheinletandoutlettemperatures.theaveragevalueofhiisEstimationofwalltemperature
tw
TheestimationoftwrequiresaniterativecalculationbasedontheresistanceequationEstimationofwalltemperature
TodeterminetwthewallresistancecanusuallybeneglectedTodeterminetwthewallrSubstitutingUo,gives
(12-38)SubstitutingUo,givesCrosssectionsotherthancircularTouseEq(12-30)forcrosssectionotherthancircularitisonlynecessarytoreplacethediameterinbothReynoldsandNusseltnumberbytheequivalentdiameterde.Crosssectionsotherthancirc
de
isdefinedas4timesthehydraulicradiusrH.Themethodisthesameasthatusedincalculatingfrictionloss.deisdefinedas4timesthHeattransferintransitionregionbetweenlaminarandturbulentflowEquation(12-32)appliesonlyforReynoldsnumbersgreaterthan6000.TherangeofReynoldsnumbersbetween2100and6000iscalledthetransitionregion,andnosimpleequationapplieshere.Heattransferintransitionre
Agraphicalmethodthereforeisused.ThemethodisbasedonacommonplotoftheColburnjfactorversusRe,withlinesofconstantvalueofL/DAgraphicalmethodtherefor
TheheattransfercoefficientcanbecalculatedbyfollowingequationTheheattransfercoefficieHeatingandcoolingoffluidsinforcedconvectionoutsidetubesThemechanismofheatflowinforcedconvectionoutsidetubesdiffersfromthatofflowinsidetubes.Thelocalvalueofheat-transfercoefficientvariesfrompointtopointaroundcircumferenceinforcedconvectionoutsidetube.HeatingandcoolingoffluidsInFig12.5,thelocalvalueoftheNusseltnumberisplottedradiallyforallpointsaroundcircumferenceofthetube.InFig12.5,thelocalvaluNuθismaximumatthefrontandbackofthetubeandaminimumatthesides.Inpractice,thevariationsinthelocalcoefficientareoftennoimportance,andaveragevaluesbasedontheentirecircumferenceareused.NuθismaximumatthefrontafluidsflowingnormaltoasingletubeThevariablesaffectingthecoefficientofheattransfertoafluidinforcedconvectionoutsideatubeareDo,theoutsidediameterofthetube;cp,μ,andk,thespecificheat,theviscosity,andthermalconductivity,respectively,ofthefluid;andG,themassvelocity.fluidsflowingnormaltoasinDimensionalanalysisgivesNusseltnumberisonlyafunctionoftheReynoldsnumber.DimensionalanalysisgivesTheexperimentaldataforairareplottedinthiswayinFig12.6TheexperimentaldataforairForheatingandcoolingliquidsflowingnormaltosinglecylindersthefollowingequationisusedForheatingandcoolingliquidNaturalconvectionConsiderahot,verticalplateincontactwiththeairinaroom.Thedensityoftheheatedairimmediatelyadjacenttotheplateislessthanthatoftheunheatedairatadistancefromtheplate,andthebuoyancyofthehotaircausesanunbalancebetweentheverticallayersofairofdifferingdensity.NaturalconvectionConsiderTemperaturedifferencebetweenthesurfaceofplateandtheaircausesaheattransfer.Naturalconvectioninliquidfollowsthesamepattern.Thebuoyancyofheatedliquidlayersnearahotsurfacegeneratesconvectioncurrentsjustasingases.TemperaturedifferencebetwForsinglehorizontalcylinders,theheattransfercoefficientcanbecorrelatedbyequationcontainingthreedimensionlessgroupsNu=f(Pr,Gr)Gr:GrashofnumberPr:PrandtlnumberForsinglehorizontalcylind(12-67)Thecoefficientofthermalexpansionβ
isapropertyoffluid(12-67)ThecoefficientoftherFig12.8showsarelationship,whichsatisfactorilycorrelatesexperimentaldataforheattransferfromasinglehorizontalcylindertoliquidsorgasesFig12.8showsarelationsh化工原理英文教材传热无相变传热Heattransfertofluidswithoutphasechange课件FormagnitudesoflogGrProf4ormore,thelineofFig12.8followscloselytheempiricalequationFormagnitudesoflogGrPrNaturalconvectiontoairfromverticalshapesandhorizontalplatesEquationsforheattransferinnaturalconvectionbetweenfluidsandsolidsofdefinitegeometricshapeareoftheform
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化艺术机构员工离职流程流程
- 学校教师岗位规章制度及职责
- 2025年四年级科学探究活动教学计划
- 2025年高校辅导员思想教育计划
- 部编版四年级语文上册课时安排计划
- 机器人社团年度发展计划
- 四年级语文家校合作提升措施
- 金融系统设计质量保证措施
- 农业产品供货方案及质量保证措施
- 矿山注浆堵水安全技术措施
- 四川省成都市金牛区2023-2024学年七年级下学期期末数学试题
- DL-T664-2016带电设备红外诊断应用规范
- 中华民族共同体概论课件专家版6第六讲 五胡入华与中华民族大交融(魏晋南北朝)
- 海南师范大学2022年计算机网络期末试题及答案
- 广西大学附属中学2023-2024学年高一化学第二学期期末质量检测模拟试题含解析
- 新型激光焊接解决方案 解决电机定子焊接难题
- 停车场智能管理系统培训教材课件
- 医学影像技术及其临床应用
- 药店营业员知识技能培训
- 胸腔镜食管癌根治术护理查房课件
- 中国电力大数据发展白皮书
评论
0/150
提交评论