版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学课件(金戈铁骑整理制作)高中数学课件(金戈铁骑整理制作)1二面角1二面角12•Aa半平面•Aa半平面3角图形构成表示法•O顶点边边AB二面角从平面内一点出发的两条射线所组成的图形.从空间一条直线出发的两个半平面所组成的图形.定义射线点射线半平面棱半平面AOB二面角a或ABa棱面面AB角图形构成表示法•O顶点边边AB二面角从平面内一点出发的两条4处理“空间角”的方法1.回忆前面学习的“线线角”和“线面角”,采取的方法都是转化为“平面角”,归结为解三角形的问题.2.现在学习二面角,自然会联想用“平面角”来表示二面角.处理“空间角”的方法1.回忆前面学习的“线线角”和“线面角”5二面角的平面角.一.定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所组成的角叫做二面角的平面角。二.特征:(1)顶点在棱上。(2)两条射线分别在两个半平面内,且和棱垂直。zxxk二面角的平面角.一.定义:以二面角的棱上任意一点二.特征:(6a•OAB平卧式a•OAB平卧式7aOAB直立式aOAB直立式8OO'ABA'B'a(1)二面角的平面角的大小与棱上点的选取无关。注意(2)二面角的度量转化为平面角的度量.OO'ABA'B'a(1)二面角的平面角的大小注意(2)9二面角A’CDB平面角为A’DBA'CABDaOAB平面角是直角的二面角叫做直二面角.练习:二面角A’CDB平面角为A’DBA'CABD10二面角的平面角的作法zxxkAB=AD,BC=CDBDACOAB=AD,BDC=900BDACOE1.利用定义.2.利用三垂线定理及其逆定理.aABOA,AB3.作棱的垂面.aPCPAB二面角的平面角的作法zxxkAB=AD,BC=CDBDAC11•aPAB例:已知:二面角-a-是300,P,P到的距离为10cm.求点P到棱a的距离.解:过P引的垂线PB,垂足为B,则PB=10cm.过B在内作a的垂线AB,垂足为A,连接PA即线段PA为所求.∵PB,ABa,∴PAaPAB是二面角-a-的平面角为300.在Rt△PBA中PA=2PB=20cm.•aPAB例:已知:二面角-a-是300,P,P12ABC'CDA'B'D'
O已知:正方体AC'中,棱长为a.求:平面D'AC与平面ACD所成二面角的正切值.解:连接BD,交AC与O.连接D'O∵ACBD于O,D'OAC于O.∴D'OD即为二面角D'-AC-D的平面角.在Rt△D'OD中tgD'OD=a/(a/2)=ABC'CDA'B'D'
O已知:正方体AC'中,棱长为a13求解空间角的原则先做图,在证明,然后计算.求解空间角的原则先做图,在证明,然后计算.14小结1.二面角与平面角的概念.2.二面角的平面角的作法.3.初步学习对二面角知识的应用.4.求解二面角问题的关键是确定平面角的位置.小结1.二面角与平面角的概念.2.二面角的平面角的作法.3.15作业P46#2,4作业P46#2,416高中数学课件(金戈铁骑整理制作)高中数学课件(金戈铁骑整理制作)17二面角1二面角118•Aa半平面•Aa半平面19角图形构成表示法•O顶点边边AB二面角从平面内一点出发的两条射线所组成的图形.从空间一条直线出发的两个半平面所组成的图形.定义射线点射线半平面棱半平面AOB二面角a或ABa棱面面AB角图形构成表示法•O顶点边边AB二面角从平面内一点出发的两条20处理“空间角”的方法1.回忆前面学习的“线线角”和“线面角”,采取的方法都是转化为“平面角”,归结为解三角形的问题.2.现在学习二面角,自然会联想用“平面角”来表示二面角.处理“空间角”的方法1.回忆前面学习的“线线角”和“线面角”21二面角的平面角.一.定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所组成的角叫做二面角的平面角。二.特征:(1)顶点在棱上。(2)两条射线分别在两个半平面内,且和棱垂直。zxxk二面角的平面角.一.定义:以二面角的棱上任意一点二.特征:(22a•OAB平卧式a•OAB平卧式23aOAB直立式aOAB直立式24OO'ABA'B'a(1)二面角的平面角的大小与棱上点的选取无关。注意(2)二面角的度量转化为平面角的度量.OO'ABA'B'a(1)二面角的平面角的大小注意(2)25二面角A’CDB平面角为A’DBA'CABDaOAB平面角是直角的二面角叫做直二面角.练习:二面角A’CDB平面角为A’DBA'CABD26二面角的平面角的作法zxxkAB=AD,BC=CDBDACOAB=AD,BDC=900BDACOE1.利用定义.2.利用三垂线定理及其逆定理.aABOA,AB3.作棱的垂面.aPCPAB二面角的平面角的作法zxxkAB=AD,BC=CDBDAC27•aPAB例:已知:二面角-a-是300,P,P到的距离为10cm.求点P到棱a的距离.解:过P引的垂线PB,垂足为B,则PB=10cm.过B在内作a的垂线AB,垂足为A,连接PA即线段PA为所求.∵PB,ABa,∴PAaPAB是二面角-a-的平面角为300.在Rt△PBA中PA=2PB=20cm.•aPAB例:已知:二面角-a-是300,P,P28ABC'CDA'B'D'
O已知:正方体AC'中,棱长为a.求:平面D'AC与平面ACD所成二面角的正切值.解:连接BD,交AC与O.连接D'O∵ACBD于O,D'OAC于O.∴D'OD即为二面角D'-AC-D的平面角.在Rt△D'OD中tgD'OD=a/(a/2)=ABC'CDA'B'D'
O已知:正方体AC'中,棱长为a29求解空间角的原则先做图,在证明,然后计算.求解空间角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《焊接质量检测与评价》教学大纲
- 教案(水的性质及水污染)
- 玉溪师范学院《伦理学》2022-2023学年第一学期期末试卷
- 地震前兆仪器账务处理实例-记账实操
- 小班泥工西瓜课件
- 2024年三季度碳交易市场运行与政策盘点-碳市场扩容信号明确成交价量均有提升
- 管理会计第5版 期中试卷
- 2019粤教版 高中美术 选择性必修3 雕塑《第三单元 了解中国雕塑的前世今生》大单元整体教学设计2020课标
- 2024届贵州省遵义市湄潭县湄江中学高三下学期第四次质量检测试题数学试题
- 财务岗位就业合同
- 实习协议模板(最新版)
- 人教版六年级上学期科学4.14《风能和水能》教学课件
- 沥青混凝土面层夜间施工安全专项方案
- 客户满意度及设备使用情况调查表
- 国家开放大学《政治学原理》章节自检自测题参考答案
- 人体五脏六腑 课件
- 智慧树知到《走进故宫》2019期末考试答案
- 医院人才梯队建设情况汇报
- 动火作业票填写模板
- 学校三年发展规划落实情况评估报告(通用3篇)
- 术后谵妄演示课件
评论
0/150
提交评论