版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.2.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限3.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.4.已知定义在上的函数,,,,则,,的大小关系为()A. B. C. D.5.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在().A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一个几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.7.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直8.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A. B. C. D.9.过点的直线与曲线交于两点,若,则直线的斜率为()A. B.C.或 D.或10.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变11.复数的虚部是()A. B. C. D.12.的展开式中,项的系数为()A.-23 B.17 C.20 D.63二、填空题:本题共4小题,每小题5分,共20分。13.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.14.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.15.等腰直角三角形内有一点P,,,,,则面积为______.16.已知函数,若函数有个不同的零点,则的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,.(1)求证:平面;(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.18.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.19.(12分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线:于点,点为的焦点.圆心不在轴上的圆与直线,,轴都相切,设的轨迹为曲线.(1)求曲线的方程;(2)若直线与曲线相切于点,过且垂直于的直线为,直线,分别与轴相交于点,.当线段的长度最小时,求的值.20.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.21.(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.22.(10分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.2、D【解析】
利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.3、B【解析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.4、D【解析】
先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.5、D【解析】
设,由,得,利用复数相等建立方程组即可.【详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.6、B【解析】
由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7、D【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.8、B【解析】
初始:,,第一次循环:,,继续循环;第二次循环:,,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B.9、A【解析】
利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.10、D【解析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题11、C【解析】因为,所以的虚部是,故选C.12、B【解析】
根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则①出,则出,该项为:;②出,则出,该项为:;③出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.14、【解析】
由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.15、【解析】
利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.16、【解析】
作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,,,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)由已知可得,结合,由直线与平面垂直的判定可得平面;(2)由(1)知,,则,,两两互相垂直,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,设,0,,由二面角的余弦值为求解,再由空间向量求解直线与平面所成角的正弦值.【详解】(1)证明:因为四边形是等腰梯形,,,所以.又,所以,因此,,又,且,,平面,所以平面.(2)取的中点,连接,,由于,因此,又平面,平面,所以.由于,,平面,所以平面,故,所以为二面角的平面角.在等腰三角形中,由于,因此,又,因为,所以,所以以为轴、为轴、为轴建立空间直角坐标系,则,,,,设平面的法向量为所以,即,令,则,,则平面的法向量,,设直线与平面所成角为,则【点睛】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题.18、(1)1(2)【解析】
(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.解法二:可利用导数,先证明不等式,,,,令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.【详解】(1)由题意,得,,由,…①,得,令,则,因为,所以在单调递增,又,所以当时,,单调递增;当时,,单调递减;所以,当且仅当时等号成立.故方程①有且仅有唯一解,实数的值为1.(2)解法一:令(),则,所以当时,,单调递增;当时,,单调递减;故.令(),则.(i)若时,,在单调递增,所以,满足题意.(ii)若时,,满足题意.(iii)若时,,在单调递减,所以.不满足题意.综上述:.解法二:先证明不等式,,,…(*).令,则当时,,单调递增,当时,,单调递减,所以,即.变形得,,所以时,,所以当时,.又由上式得,当时,,,.因此不等式(*)均成立.令(),则,(i)若时,当时,,单调递增;当时,,单调递减;故.(ii)若时,,在单调递增,所以.因此,①当时,此时,,,则需由(*)知,,(当且仅当时等号成立),所以.②当时,此时,,则当时,(由(*)知);当时,(由(*)知).故对于任意,.综上述:.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.19、(1).(2)见解析.【解析】试题分析:(1)设根据题意得到,化简得到轨迹方程;(2)设,,,,构造函数研究函数的单调性,得到函数的最值.解析:(1)因为抛物线的方程为,所以的坐标为,设,因为圆与轴、直线都相切,平行于轴,所以圆的半径为,点,则直线的方程为,即,所以,又,所以,即,所以的方程为.(2)设,,,由(1)知,点处的切线的斜率存在,由对称性不妨设,由,所以,,所以,,所以.令,,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即取得最小值,此时.点睛:求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.20、(1);(2)见解析.【解析】
(1)令,,利用可求得数列的通项公式,由此可得出数列的通项公式;(2)求得,利用裂项相消法求得,进而可得出结论.【详解】(1)令,,当时,;当时,,则,故;(2),.【点睛】本题考查利用求通项,同时也考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红河学院《政治学研究方法》2022-2023学年第一学期期末试卷
- 有关幸福的演讲稿汇编6篇
- 有关三分钟的演讲稿模板合集七篇
- 我是猫读后感
- 黑龙江工程学院《公路工程估价》2021-2022学年第一学期期末试卷
- 黑龙江工程学院《材料分析测试技术》2022-2023学年第一学期期末试卷
- 黑龙江东方学院《纳税申报实训》2022-2023学年第一学期期末试卷
- 黑龙江东方学院《给水工程》2023-2024学年第一学期期末试卷
- 黑龙江大学《种子病理学》2022-2023学年第一学期期末试卷
- 黑龙江大学《土壤调查与制图》2022-2023学年第一学期期末试卷
- 全国职业院校技能大赛高职组(供应链管理赛项)备赛试题库(含答案)
- 小区业主微信群管理规约
- 2024湖南长沙市人力社保局所属事业单位招聘历年(高频重点复习提升训练)共500题附带答案详解
- 防洪监理实施细则
- HG∕T 2469-2011 立式砂磨机 标准
- 化工企业重大事故隐患判定标准培训考试卷(后附答案)
- 河南省南阳市2023-2024学年高一上学期期中考试英语试题
- 上海市信息科技学科初中学业考试试卷及评分标准
- 2023辽宁公务员考试《行测》真题(含答案及解析)
- 《咖啡知识》课件
- 冀教版数学七年级上下册知识点总结
评论
0/150
提交评论