2022年黄南市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第1页
2022年黄南市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第2页
2022年黄南市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第3页
2022年黄南市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第4页
2022年黄南市重点中学数学九年级上册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将抛物线y=x2﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为()A.y=(x+3)2 B.y=(x﹣3)2 C.y=(x+2)2+1 D.y=(x﹣2)2+12.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为()A.2或-2 B.2 C.-2 D.03.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为()A. B. C. D.4.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A. B. C.1 D.5.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是()A.∠AED=∠B B.∠ADE=∠C C. D.6.如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是,;④当时,的取值范围是;⑤当时,随增大而增大其中结论正确的个数是A.1个 B.2个 C.3个 D.4个7.某学习小组在研究函数y=x3﹣2x的图象与性质时,列表、描点画出了图象.结合图象,可以“看出”x3﹣2x=2实数根的个数为()A.1 B.2 C.3 D.48.如图,在平面直角坐标系中,若反比例函数过点,则的值为()A. B. C. D.9.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直10.如图,在中,所对的圆周角,若为上一点,,则的度数为()A.30° B.45° C.55° D.60°11.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.12.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠D=110°,则∠AOC的度数为()A.130° B.135° C.140° D.145°二、填空题(每题4分,共24分)13.已知x=2是方程x2-a=0的解,则a=_______.14.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.15.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.16.已知关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,那么a的值为.17.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.18.计算sin245°+cos245°=_______.三、解答题(共78分)19.(8分)如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=,AD=6,求线段AE的长.20.(8分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形的边长为4,E为的中点,,连结.,求证:为四边形的相似对角线.(2)在四边形中,,,,平分,且是四边形的相似对角线,求的长.(3)如图2,在矩形中,,,点E是线段(不取端点A.B)上的一个动点,点F是射线上的一个动点,若是四边形的相似对角线,求的长.(直接写出答案)21.(8分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?22.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.(10分)如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.24.(10分)如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)25.(12分)如图,在中,,平分交于点,将绕点顺时针旋转到的位置,点在上.(1)旋转的度数为______;(2)连结,判断与的位置关系,并说明理由.26.图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)求这条抛物线的解析式;(2)水面上升1m,水面宽是多少?

参考答案一、选择题(每题4分,共48分)1、B【分析】利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案.【详解】将抛物线y=x2﹣2向右平移3个单位长度,得到平移后解析式为:y=(x﹣3)2﹣2,∴再向上平移2个单位长度所得的抛物线解析式为:y=(x﹣3)2﹣2+2,即y=(x﹣3)2;故选:B.【点睛】考核知识点:二次函数图象.理解性质是关键.2、B【分析】根据一元二次方程的定义可得:|m|=1,且m+1≠0,再解即可.【详解】解:由题意得:|m|=1,且m+1≠0,

解得:m=1.

故选:B.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”.3、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到Rt△ADE≌Rt△ACB,于是.【详解】∵∠ACB=90°,AC=BC=1,

∴,

∴,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,

∴Rt△ADE≌Rt△ACB,∴.

故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.4、C【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.5、C【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、不能判定△ADE∽△ACB,故C选项正确;D、,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.6、C【分析】利用抛物线与轴的交点个数可对①进行判断;由对称轴方程得到,然后根据时函数值为0可得到,则可对②进行判断;利用抛物线的对称性得到抛物线与轴的一个交点坐标为,则可对③进行判断;根据抛物线在轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【详解】解:抛物线与轴有2个交点,,所以①正确;,即,而时,,即,,所以②错误;抛物线的对称轴为直线,而点关于直线的对称点的坐标为,方程的两个根是,,所以③正确;根据对称性,由图象知,当时,,所以④错误;抛物线的对称轴为直线,当时,随增大而增大,所以⑤正确.故选:.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点位置:抛物线与轴交于;抛物线与轴交点个数由△决定:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.7、C【分析】利用直线y=2与yx1﹣2x的交点个数可判断x1﹣2x=2实数根的个数.【详解】由图象可得直线y=2与yx1﹣2x有三个交点,所以x1﹣2x=2实数根的个数为1.故选C.【点睛】本题考查了函数图像的交点问题:把要求方程根的问题转化为函数图像的交点问题是解题关键.8、C【解析】把代入求解即可.【详解】反比例函数过点,,故选:.【点睛】本题考查反比例函数图象上的点的特征,解题的关键是熟练掌握基本知识,属于中考常考题型.9、B【分析】根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.10、B【解析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.11、D【分析】根据三角形全等的判定定理逐项判断即可.【详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【点睛】本题考查了三角形全等的判定定理,熟记各定理是解题关键.12、C【分析】根据“圆内接四边形的对角互补”,由∠D可以求得∠B,再由圆周角定理可以求得∠AOC的度数.【详解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故选C.【点睛】本题考查圆周角定理及圆内接四边形的性质,熟练掌握有关定理和性质的应用是解题关键.二、填空题(每题4分,共24分)13、4【分析】将x=2代入方程计算即可求出a的值.【详解】解:将x=2代入方程得:4-a=0,解得:a=4,故答案为:4.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14、1【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1粒.故答案为1.【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.15、x(x+12)=1【分析】设每行有个座位,根据等量关系,列出一元二次方程,即可.【详解】设每行有个座位,则总行数为(x+12)行,根据题意,得:x(x+12)=1,故答案是:x(x+12)=1.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.16、-1【解析】试题分析:把代入方程,即可得到关于a的方程,再结合二次项系数不能为0,即可得到结果.由题意得,解得,则考点:本题考查的是一元二次方程的根即方程的解的定义点评:解答本题的关键是熟练掌握一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.同时注意一元二次方程的二次项系数不能为0.17、55【解析】分析:∵∠ACB与∠AOB是所对的圆周角和圆心角,∠ACB=35º,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.18、1【分析】根据特殊角的三角函数值先进行化简,然后根据实数运算法则进行计算即可得出结果.【详解】原式=()2+()2=+=1.【点睛】本题主要考查了特殊角的三角函数值,需要熟记,比较简单.三、解答题(共78分)19、(1)PC是⊙O的切线;(2)【解析】试题分析:(1)结论:PC是⊙O的切线.只要证明OC∥AD,推出∠OCP=∠D=90°,即可.(2)由OC∥AD,推出,即,解得r=,由BE∥PD,AE=AB•sin∠ABE=AB•sin∠P,由此计算即可.试题解析:解:(1)结论:PC是⊙O的切线.理由如下:连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴,即,解得r=.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=×=.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.20、(1)见解析(2)或;(1)或或1【分析】(1)根据已知中相似对角线的定义,只要证明△AEF∽△ECF即可;

(2)AC是四边形ABCD的相似对角线,分两种情形:△ACB△ACD或△ACB△ADC,分别求解即可;

(1)分三种情况①当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线.②取AD中点F,连接CF,将△CFD沿CF翻折得到△CFD′,延长CD′交AB于E,则可得出EF是四边形AECF的相似对角线.③取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则可证出EF是四边形AECF的相似对角线.此时BE=1;【详解】解:(1)∵四边形ABCD是正方形,

∴AB=BC=CD=AD=4,

∵E为的中点,,∴AE=DE=2,∵∠A=∠D=90°,

∴△AEF∽△DCE,

∴∠AEF=∠DCE,∵∠DCE+∠CED=90°,

∴∠AEF+∠CED=90°,

∴∠FEC=∠A=90°,∴△AEF∽△ECF,

∴EF为四边形AECF的相似对角线.(2)∵平分,∴∠BAC=∠DAC=60°∵AC是四边形ABCD的相似对角线,

∴△ACB△ACD或△ACB△ADC

①如图2,当△ACB△ACD时,此时,△ACB≌△ACD∴AB=AD=1,BC=CD,

∴AC垂直平分DB,

在Rt△AOB中,∵AB=1,∠ABO=10°,②当△ACB△ADC时,如图1∴∠ABC=∠ACD∴AC2=AB•AD,

∵,∴6=1AD,

∴AD=2,

过点D作DHAB于H在Rt△ADH中,∵∠HAD=60°,AD=2,在Rt△BDH中,综上所述,的长为:或(1)①如图4,当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线,

设AE=EC=x,

在Rt△BCE中,∵EC2=BE2+BC2,

∴x2=(6-x)2+42,

解得x=,

∴BE=AB-AE=6-=.

②如图5中,如图取AD中点F,连接CF,将△CFD沿CF翻折得到△CFD′,延长CD′交AB于E,则EF是四边形AECF的相似对角线.

∵△AEF∽△DFC,∴③如图6,取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则EF是四边形AECF的相似对角线.则BE=1.

综上所述,满足条件的BE的值为或或1.【点睛】本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.【解析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.【详解】(1)∵点A是直线与抛物线的交点,且横坐标为-2,,A点的坐标为(-2,1),设直线的函数关系式为y=kx+b,将(0,4),(-2,1)代入得解得∴y=x+4∵直线与抛物线相交,解得:x=-2或x=8,

当x=8时,y=16,

∴点B的坐标为(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴点C的坐标为(-,0),(0,0),(6,0),(32,0)(3)设M(a,a2),则MN=,又∵点P与点M纵坐标相同,∴x+4=a2,∴x=,∴点P的横坐标为,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴当a=6时,取最大值1,∴当M的横坐标为6时,MN+3PM的长度的最大值是122、(1)抽样调查;12;3;(2)60;(3).【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.23、(1)详见解析;(2)10cm.【分析】(1)运用作垂直平分线的方法作图,(2)运用垂直平分线的性质得出BD=DC,利用△ABD的周

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论