




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE2.己知是一元二次方程的一个根,则的值为()A.1 B.-1或2 C.-1 D.03.如图,PA,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=()A.54° B.72° C.108° D.144°4.如图,,,以下结论成立的是()A. B.C. D.以上结论都不对5.将抛物线y=2xA.y=2(x-2)2-3 B.y=2(x-2)26.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.7.如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为()A.8 B.6 C. D.8.方差是刻画数据波动程度的量.对于一组数据,,,…,,可用如下算式计算方差:,其中“5”是这组数据的()A.最小值 B.平均数 C.中位数 D.众数9.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA= B.cosA= C.tanA= D.cosA=10.已有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎 B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎 D.甲、乙、丙都说谎二、填空题(每小题3分,共24分)11.如图,内接于,于点,,若的半径,则的长为______.12.如图,某舰艇上午9时在A处测得灯塔C在其南偏东75°方向上,且该舰艇以每小时10海里的速度沿南偏东15°方向航行,11小时到达B处,在B处测得灯塔C在北偏东75°方向上,则B处到灯塔C的距离为________海里.13.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.14.已知,则_____.15.如图,在平面直角坐标系xOy中,,,如果抛物线与线段AB有公共点,那么a的取值范围是______.16.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有________种17.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.18.如图,RtΔABC绕直角顶点C顺时针旋转90°,得到ΔDEC,连接AD,若∠BAC=25°,则∠ADE=_________三、解答题(共66分)19.(10分)解方程:2x2+x﹣6=1.20.(6分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的长.21.(6分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?22.(8分)在直角坐标平面内,某二次函数图象的顶点为,且经过点.(1)求该二次函数的解析式;(2)求直线y=-x-1与该二次函数图象的交点坐标.23.(8分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.24.(8分)已知方程是关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个根之和等于两根之积,求的值.25.(10分)甲、乙两人用如图所示的两个转盘(每个转盘分别被分成面积相等的3个扇形)做游戏,游戏规则:甲转动A盘一次,乙转动B盘一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;并求出甲获胜的概率.26.(10分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.
参考答案一、选择题(每小题3分,共30分)1、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB与BD:AB=CE:ACAB:AC=AD:AE,根据平行线分线段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【详解】A、∵AD:DB=AE:EC,∴DE∥BC,故本选项能判定DE∥BC;
B、由DE:BC=AD:AB,不能判定DE∥BC,故本选项不能判定DE∥BC.
C、∵BD:AB=CE:AC,∴DE∥BC,故本选项能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本选项能判定DE∥BC.
所以选B.【点睛】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意准确应用平行线分线段成比例定理与数形结合思想的应用.2、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x=2代入方程求解可得m的值.【详解】把x=2代入方程(m﹣2)x2+4x﹣m2=0得到(m﹣2)+4﹣m2=0,解得:m=﹣2或m=2.∵m﹣2≠0,∴m=﹣2.故选:C.【点睛】本题考查了一元二次方程的解的定义,解题的关键是理解一元二次方程解的定义,属于基础题型.3、B【解析】连接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故选B.4、C【分析】根据已知条件结合相似三角形的判定定理逐项分析即可.【详解】解:∵∠AOD=90°,设OA=OB=BC=CD=x∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x,∴,∴∴.故答案为C.【点睛】本题主要考查了相似三角形的判定,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.5、B【解析】根据“左加右减,上加下减”的规律求解即可.【详解】y=2x2向右平移2个单位得y=2(x﹣2)2,再向上平移3个单位得y=2(x﹣2)2+3.故选B.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.6、C【分析】根据图中符号所处的位置关系作答.【详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【点睛】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.7、A【分析】作轴于,轴于,设.依据直线的解析式即可得到点和点的坐标,进而得出,,再根据勾股定理即可得到,进而得出,即可得到的值.【详解】解:作轴于,轴于,如图,设,当时,,则,当时,,解得,则,∵沿直线翻折后,点的对应点为点,∴,,在中,,①在中,,②①-②得,把代入①得,解得,∴,∴,∴.故选A.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数(为常数,)的图象是双曲线,图象上的点的横纵坐标的积是定值,即.8、B【分析】根据方差公式的定义即可求解.【详解】方差中“5”是这组数据的平均数.故选B.【点睛】此题主要考查平均数与方差的关系,解题的关键是熟知方差公式的性质.9、B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A错误;cosA=,故B正确;tanA=,故C错误;cosA=,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.10、B【分析】分情况,依次推理可得.【详解】解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.【点睛】本题考查推理能力,关键在于假设法,推出矛盾是否即可判断对错.二、填空题(每小题3分,共24分)11、【分析】连接OC,先证出△ADB为等腰直角三角形,从而得出∠ABD=45°,然后根据同弧所对的圆周角是圆心角的一半即可求出∠AOC,然后根据勾股定理即可求出AC.【详解】解:连接OC∵,,∴△ADB为等腰直角三角形∴∠ABD=45°∴∠AOC=2∠ABD=90°∵的半径∴OC=OA=2在Rt△OAC中,AC=故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、圆周角定理和勾股定理,掌握等腰直角三角形的判定及性质、同弧所对的圆周角是圆心角的一半和利用勾股定理解直角三角形是解决此题的关键.12、20【分析】根据题意得出,,据此即可求解.【详解】根据题意:(海里),如图,根据题意:,,∴,,∴,∴,答:B处到灯塔C的距离为海里.故答案为:.【点睛】本题考查了解直角三角形的应用-方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.13、1【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于1,故答案为:1.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14、【分析】由已知可得x、y的关系,然后代入所求式子计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查了比例的性质和代数式求值,属于基本题型,掌握求解的方法是关键.15、【解析】分别把A、B点的坐标代入得a的值,根据二次函数的性质得到a的取值范围.【详解】解:把代入得;把代入得,所以a的取值范围为.故答案为.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练掌握二次函数的性质.16、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;
∴有1种可能使四边形ABCD为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.17、60°.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.18、20°【分析】由题意根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,根据∠ADE=∠CED-∠CAD.【详解】解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到△DEC,∴AC=CD,∠CDE=∠BAC=25°,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠ADE=∠CED-∠CAD=45°-25°=20°.故答案为:20°.【点睛】本题考查旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确掌握理解图示是解题的关键.三、解答题(共66分)19、x1=1.5,x2=﹣2.【分析】利用因式分解法进行解方程即可.【详解】解:因式分解得:,可得或,解得:,【点睛】本题主要考察因式分解法解方程,熟练运用因式分解是关键.20、(1)、证明过程见解析;(2)、【解析】试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.试题解析:(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=1﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(1﹣x):1,解得:x=,∴DE的长是.考点:相似三角形的判定与性质.21、(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.【解析】(1)根据“当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获的利润×销售量列出函数关系式整理,然后根据二次函数的最值问题解答即可.试题分析:试题解析:(1)由题意得,y=700-20(x-45)=-20x+1600;(2),∵x≥45,抛物线的开口向下,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.考点:二次函数的应用.22、(1);(2)两个函数图象的交点坐标是和.【分析】(1)根据题意可设该二次函数的解析式为,把点代入函数解析式,求出a值,进而得出该二次函数的解析式;(2)由题意直线y=-x-1与该二次函数图象有交点得,进行求解进而分析即可.【详解】解:(1)依题意可设该二次函数的解析式为,把代入函数解析式,得,解得,故该二次函数的解析式是.(2)据题意,得,得,.当时,可得;当时,可得.故两个函数图象的交点坐标是和.【点睛】本题考查待定系数法求二次函数解析式,解题的关键是设出二次函数的顶点式,求出函数解析式.23、(1),;(2)x<-2,或0<x<1【分析】(1)把A(1,-k+4)代入解析式,即可求出k的值;把求出的A点坐标代入一次函数的解析式,即可求出b的值;从而求出这两个函数的表达式;
(2)将两个函数的解析式组成方程,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【详解】解:(1)由题意,得,∴k=2,∴A(1,2),2=b+1∴b=1,反比例函数表达式为:,一次函数表达式为:.(2)又由题意,得,,解得∴B(-2,-1),∴当x<-2,或0<x<1时,反比例函数大于一次函数的值.【点睛】本题考查了一次函数与反比例函数的综合,能正确看图象是解题的关键.24、(1)详见解析;(2)1.【分析】(1)根据一元二次方程根的判别式,即可得到结论;(2)由一元二次方程根与系数的关系,得,,进而得到关于m的方程,即可求解.【详解】(1)∵方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代专利代理的特点试题及答案
- 法务求职笔试题及答案
- 药品流通监管体系试题及答案
- 2024年高中生物课时达标训练六神经调节与体液调节的关系含解析新人教版必修3
- 营养对健康促进的贡献试题及答案
- 二年级数学上册一看魔术-乘法的初步认识1.3有关1和0的乘法同步练习青岛版六三制
- 细化卫生管理知识试题及答案
- 考查科目学生成绩登记表
- 理论知识回顾初级会计师试题及答案
- 激光技术与物联网结合的应用前景试题及答案
- 2024年重庆市高考物理试卷(含答案解析)
- 美术四年级国测模拟题(满分50分)附有答案
- 《事故汽车常用零部件修复与更换判别规范》
- 国家粮食和物资储备局湖北局三三八处招聘笔试参考题库含答案解析2024
- 家族办公室公司章程
- 2024年度保密教育线上培训考试题库新版
- 【9道三模】2024年安徽省合肥市蜀山区中考三模道德与法治试题(含解析)
- 敲墙搬运合同范本
- (高清版)JTGT 5190-2019 农村公路养护技术规范
- 小学生必背古诗“飞花令”200句
- 2024年3月青少年软件编程Scratch图形化等级考试试卷一级真题(含答案)
评论
0/150
提交评论