




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1旋转第24章圆
随堂训练第1课时旋转的概念和性质24.1旋转第24章圆随堂第1课时旋转的概念1自转与公转情景导入自转与公转情景导入2(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(1)上面情景中的转动现象,有什么共同的特征?3这个定点称为旋转中心,转动的角称为旋转角.旋转角旋转中心AoB在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.自主学习旋转的要素:旋转中心,旋转方向,旋转角度.这个定点称为旋转中心,转动的角称为旋转角.旋转角旋转中心Ao4平移和旋转的异同:1.相同点:都是一种运动;运动前后不改变图形的形状和大小BACO2.不同点运动方向运动量的衡量平移直线移动一定距离旋转顺时针逆时针转动一定的角度平移和旋转的异同:BACO2.不同点运动方向运动量的衡量平移53.量一下∠AOD的度数,再任意找几对对应点,分别量一下对应点与旋转中心连线段的度数,你又能发现什么规律?2.分别连结对应点A、D与旋转中心O,量一量线段OA与线段OD,它们有什么关系?任意找一对对应点,量一下它们与旋转中心的连线段,你能发现什么规律?1.观察所给图形的变化,回答下列问题:1.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?合作探究活动:探究旋转的性质3.量一下∠AOD的度数,再任意找几对对应点,分别量一下对应6DEABFCODEABFCO7
2.
如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?旋转中心是O点D和点E的位置AO=DO,BO=EO∠AOD=∠BOE∠AOD和∠BOE都是旋转角BACDEFO2.如图,如果把钟表的指针看做四边形AOBC,它8(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不改变图形的大小和形状即全等.(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.(3)任意一对对应点与旋转中心的连线所成的角度都是旋转角.归纳:(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不9在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.旋转的概念:旋转的性质:1.旋转不改变图形的大小和形状;2.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角相等;3.对应点到旋转中心的距离相等.课堂小结沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样101.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?(2)分针匀速旋转一周需要60分,因此旋转20分,分针旋转的角度为.解:(1)它的旋转中心是钟表的轴心;随堂训练沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件1.钟表的分针匀速旋转一周需要60分.(2)分针匀速旋转一周11可以看做是一个花瓣连续4次旋转所形成的,每次旋转的角度分别等于72°,144°,216°,288°.2.香港区徽可以看做是什么“基本图案”通过怎样的旋转而得到的?沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件可以看做是一个花瓣连续4次旋转所形成的,每次旋转的角度分别等123.本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?也可以看做是二个相邻菱形通过几次旋转得到的?每次旋转了多少度?还可以看做是几个菱形通过几次旋转得到的?每次旋转了多少度?3个1次180°2次120°,240°5次60°,120°,180°,240°,300°沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件3.本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多134.在图中,正方形ABCD与正方形EFGH边长相等,这个图案可以看做是哪个“基本图案”通过旋转得到的?ACBDEFGHo沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件4.在图中,正方形ABCD与正方形EFGH边长相等,这个图案1424.1旋转第24章圆
随堂训练第1课时旋转的概念和性质24.1旋转第24章圆随堂第1课时旋转的概念15自转与公转情景导入自转与公转情景导入16(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(1)上面情景中的转动现象,有什么共同的特征?17这个定点称为旋转中心,转动的角称为旋转角.旋转角旋转中心AoB在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.自主学习旋转的要素:旋转中心,旋转方向,旋转角度.这个定点称为旋转中心,转动的角称为旋转角.旋转角旋转中心Ao18平移和旋转的异同:1.相同点:都是一种运动;运动前后不改变图形的形状和大小BACO2.不同点运动方向运动量的衡量平移直线移动一定距离旋转顺时针逆时针转动一定的角度平移和旋转的异同:BACO2.不同点运动方向运动量的衡量平移193.量一下∠AOD的度数,再任意找几对对应点,分别量一下对应点与旋转中心连线段的度数,你又能发现什么规律?2.分别连结对应点A、D与旋转中心O,量一量线段OA与线段OD,它们有什么关系?任意找一对对应点,量一下它们与旋转中心的连线段,你能发现什么规律?1.观察所给图形的变化,回答下列问题:1.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?合作探究活动:探究旋转的性质3.量一下∠AOD的度数,再任意找几对对应点,分别量一下对应20DEABFCODEABFCO21
2.
如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?旋转中心是O点D和点E的位置AO=DO,BO=EO∠AOD=∠BOE∠AOD和∠BOE都是旋转角BACDEFO2.如图,如果把钟表的指针看做四边形AOBC,它22(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不改变图形的大小和形状即全等.(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度.(3)任意一对对应点与旋转中心的连线所成的角度都是旋转角.归纳:(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不23在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.旋转的概念:旋转的性质:1.旋转不改变图形的大小和形状;2.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角相等;3.对应点到旋转中心的距离相等.课堂小结沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样241.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?(2)分针匀速旋转一周需要60分,因此旋转20分,分针旋转的角度为.解:(1)它的旋转中心是钟表的轴心;随堂训练沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件1.钟表的分针匀速旋转一周需要60分.(2)分针匀速旋转一周25可以看做是一个花瓣连续4次旋转所形成的,每次旋转的角度分别等于72°,144°,216°,288°.2.香港区徽可以看做是什么“基本图案”通过怎样的旋转而得到的?沪科版九年级下册数学《旋转》PPT课件沪科版九年级下册数学《旋转》PPT课件可以看做是一个花瓣连续4次旋转所形成的,每次旋转的角度分别等263.本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?也可以看做是二个相邻菱形通过几次旋转得到的?每次旋转了多少度?还可以看做是几个菱形通过几次旋转得到的?每次旋转了多少度?3个1次180°2次120°,240°5次60°,120°,180°,240°,300°沪科版九年级下册数学《
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学成数(同步练习)六年级下册含答案
- 徐州工程学院《工程制图C》2023-2024学年第二学期期末试卷
- 邢台医学高等专科学校《中学语文经典散文解读》2023-2024学年第二学期期末试卷
- 双河市2025年三年级数学第二学期期末联考试题含解析
- 江苏理工学院《法医学》2023-2024学年第一学期期末试卷
- 宿州航空职业学院《高等数学提高》2023-2024学年第二学期期末试卷
- 新疆职业大学《企业经营管理沙盘》2023-2024学年第二学期期末试卷
- 福州市八县协作校2025届高三第二次诊断考试物理试题含解析
- 牵引并发症的预防和护理
- 360色彩基础知识课件
- 人教版八年级物理《光的反射说课稿》
- 风险分级管控责任清单(桥梁工程)
- 供应链管理-第十三章供应链绩效评价课件
- DB15T 489-2019 石油化学工业建设工程技术资料管理规范
- 1.《郑人买履》课件PPT
- 焊接过程记录表
- 急性心肌梗死PPTPPT
- 钢架桥搭设的基本程序和方法
- 遵义会议ppt课件
- 国家开放大学《人文英语3》章节测试参考答案
- 高教类课件:微电影创作教程
评论
0/150
提交评论