版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直2.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A. B. C. D.3.若复数满足,则的虚部为()A.5 B. C. D.-54.若(),,则()A.0或2 B.0 C.1或2 D.15.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位6.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是()A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了7.函数在上的图象大致为()A. B.C. D.8.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.9.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A. B.C. D.10.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.11.若、满足约束条件,则的最大值为()A. B. C. D.12.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. B. C.或- D.和-二、填空题:本题共4小题,每小题5分,共20分。13.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.14.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.15.已知函数,且,,使得,则实数m的取值范围是______.16.设函数满足,且当时,又函数,则函数在上的零点个数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在中,,的角平分线与交于点,.(Ⅰ)求;(Ⅱ)求的面积.18.(12分)在中,为边上一点,,.(1)求;(2)若,,求.19.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.20.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.21.(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.22.(10分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【题目详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【答案点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.2、C【答案解析】
将圆锥的体积用两种方式表达,即,解出即可.【题目详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【答案点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.3、C【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【答案点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4、A【答案解析】
利用复数的模的运算列方程,解方程求得的值.【题目详解】由于(),,所以,解得或.故选:A【答案点睛】本小题主要考查复数模的运算,属于基础题.5、D【答案解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D6、C【答案解析】
假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【题目详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【答案点睛】本题考查了逻辑推理能力,属基础题.7、A【答案解析】
首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【题目详解】解:依题意,,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【答案点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.8、D【答案解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【题目详解】设,,所以,,,所以.故选:D【答案点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.9、A【答案解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.10、B【答案解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【题目详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【答案点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.11、C【答案解析】
作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【题目详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示.由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【答案点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.12、C【答案解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.【题目详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,∴由对称性可知k=±.故选C.【答案点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【题目详解】①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;③若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1.【答案点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.14、【答案解析】
取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,,由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【题目详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【答案点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.15、【答案解析】
根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.【题目详解】解:依题意,,即函数在上的值域是函数在上的值域的子集.因为在上的值域为()或(),在上的值域为,故或,解得故答案为:.【答案点睛】本题考查了分段函数的值域求参数的取值范围,属于中档题.16、1【答案解析】
判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.【题目详解】知,函数为偶函数,,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,,,当时,,,函数先增后减。当时,,,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1.故答案为:.【答案点睛】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【答案解析】试题分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,进而得,在中,由正弦定理得,所以的面积即可得解.试题解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面积.18、(1);(2)4【答案解析】
(1),利用两角差的正弦公式计算即可;(2)设,在中,用正弦定理将用x表示,在中用一次余弦定理即可解决.【题目详解】(1)∵,∴,所以,.(2)∵,∴设,,在中,由正弦定理得,,∴,∴,∵,∴∴.【答案点睛】本题考查两角差的正弦公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.19、(1)(2)证明见解析(3)证明见解析【答案解析】
(1)由是递增数列,得,由此能求出的前项和.(2)推导出,,由此能证明的“极差数列”仍是.(3)证当数列是等差数列时,设其公差为,,是一个单调递增数列,从而,,由,,,分类讨论,能证明若数列是等差数列,则数列也是等差数列.【题目详解】(1)解:∵无穷数列的前项中最大值为,最小值为,,,是递增数列,∴,∴的前项和.(2)证明:∵,,∴,∴,∵,∴,∴的“极差数列”仍是(3)证明:当数列是等差数列时,设其公差为,,根据,的定义,得:,,且两个不等式中至少有一个取等号,当时,必有,∴,∴是一个单调递增数列,∴,,∴,∴,∴是等差数列,当时,则必有,∴,∴是一个单调递减数列,∴,,∴,∴.∴是等差数列,当时,,∵,中必有一个为0,根据上式,一个为0,为一个必为0,∴,,∴数列是常数数列,则数列是等差数列.综上,若数列是等差数列,则数列也是等差数列.【答案点睛】本小题主要考查新定义数列的理解和运用,考查等差数列的证明,考查数列的单调性,考查化归与转化的数学思想方法,属于难题.20、(1)(2)直线过定点,该定点的坐标为.【答案解析】
(1)因为椭圆过点,所以①,设为坐标原点,因为,所以,又,所以②,将①②联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将代入,消去可得,则,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 曼德拉英语课件
- 西南林业大学《茶文化与茶艺》2023-2024学年第一学期期末试卷
- 西京学院《医学统计学》2022-2023学年第一学期期末试卷
- 西京学院《商业伦理与职业道德》2023-2024学年第一学期期末试卷
- 西京学院《急危重症护理学》2022-2023学年第一学期期末试卷
- 西京学院《电气控制与PLC》2022-2023学年期末试卷
- 西京学院《FundamentalsofManagementAccounting》2022-2023学年第一学期期末试卷
- 西华师范大学《数字电子技术》2022-2023学年期末试卷
- 2024-2025学年高二物理举一反三系列1.1磁场对通电导线的作用力((含答案))
- 西华师范大学《教育统计学》2021-2022学年第一学期期末试卷
- 六年级上册美术课件-第1课 建筑艺术的美 ▏人美版 (共27张PPT)
- 教培用诊断学少尿无尿多尿课件
- 医院引流管护理考核评价标准
- 培养孩子的好习惯课件
- 二年级上册总复习(表内乘法)-完整版PPT
- 四年级美术上册课件-14.漂亮的房间4-苏少版(共17张PPT)
- 环境规划与管理全套课件完整版电子教案最新板
- 整形外科诊疗规范
- GB∕T 17268-2020 工业用非重复充装焊接钢瓶
- 苏教版二年级数学上册《认识线段》课件(市级赛课一等奖)
- 幼儿园:中班美术活动《柿柿如意》
评论
0/150
提交评论