下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版初一数学上册第四章基本的平面图形基础知识点一、直线、射线、线段(1)直线、射线、线段的表示方法
①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.
②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).
(2)点及直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.(3)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.
(4)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.二、线段的性质:两点之间线段最短线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.(1)两点间的距离:连接两点间的线段的长度叫两点间的距离.
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.三、比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.
就结果而言有三种结果:AB>CD、AB=CD、AB<CD.
(2)线段的中点:把一条线段分成两条相等的线段的点.
(3)线段的与、差、倍、分及计算
作一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.
如图,AB=AC+BC;AC=BC,C为AB中点,AC=AB,AB=2AC,D为CB中点,则CD=DB=,CB=AB,AB=4CD,这就是线段的与、差、倍、分.四、作图—尺规作图的定义(1)尺规作图是指用没有刻度的直尺与圆规作图.只使用圆规与直尺,并且只准许使用有限次,来解决不同的平面几何作图题.
(2)基本要求
它使用的直尺与圆规带有想像性质,跟现实中的并非完全相同.
直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.
圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度.五、角的概念(1)角的定义:有公共端点的两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.
(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.
(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边及终边成一条直线时形成平角,当始边及终边旋转重合时,形成周角.
(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.六、钟面角(1)钟面一周平均分60格,相邻两格刻度之间的时间间隔是1分钟,时针1分钟走,分针1分钟走1格.钟面上每一格的度数为360°÷12=30°.
(2)计算钟面上时针及分针所成角的度数,一般先从钟面上找出某一时刻分针及时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针及时针的夹角的度数.
(3)钟面上的路程问题
分针:60分钟转一圈,每分钟转动的角度为:360°÷60=6°
时针:12小时转一圈,每分钟转动的角度为:360°÷12÷°七、方向角方向角是从正北或正南方向到目标方向所形成的小于90°的角
(1)方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.
(2)用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述南北,再叙述东西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)
(3)画方向角
以正南或正北方向作方向角的始边,另一边则表示对象所处的方向的射线.八、度分秒的换算(1)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.
(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位与进位的方法.九、角平分线的定义(1)角平分线的定义
从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.十、角的计算(1)角的与差倍分
①∠AOB是∠AOC与∠BOC的与,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB与∠BOC的差,记作:∠AOC=∠AOB-∠BOC.②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=∠AOB.
(2)度、分、秒的加减运算.在进行度分秒的加减时,要将度及度,分及分,秒及秒相加减,分秒相加,逢60要进位,相减时,要借1化60.
(3)度、分、秒的乘除运算.①乘法:度、分、秒分别相乘,结果逢60要进位.②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除.十一、角的大小比较(1)比较角的大小有两种方法:
①测量法,即用量角器量角的度数,角的度数越大,角越大.
②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.
(2)表示法:①∠AOB>∠A′O′B′,②∠AOB=∠A′O′B′,③∠AOB<∠A′O′B′.十二、多边形(1)多边形的概念:在平面内,由若干线段首尾顺次相连组成的封闭平面图形叫做多边形.
(2)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
(3)正多边形的概念:各个角都相等,各条边都相等的多边形叫做正多边形.
(4)多边形可分为凸多边形与凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形.
十三、多边形的对角线(1)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
(2)n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为:n(n-3)÷2(n≥3,且n为整数)
(3)对多边形对角线条数公:n(n-3)÷2的理解:n边形的一个顶点不能及它本身及左右两个邻点相连成对角线,故可连出(n-3)条.共有n个顶点,应为n(n-3)条,这样算出的数,正好多出了一倍,所以再除以2.
(4)利用以上公式,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.十四、圆的认识(1)圆的定义:定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.
定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.
(2)及圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.
连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.
(3)圆的基本性质:①轴对称性.②中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论