2022年抚州市数学高三第一学期期末统考模拟试题含解析_第1页
2022年抚州市数学高三第一学期期末统考模拟试题含解析_第2页
2022年抚州市数学高三第一学期期末统考模拟试题含解析_第3页
2022年抚州市数学高三第一学期期末统考模拟试题含解析_第4页
2022年抚州市数学高三第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,2.在等差数列中,若,则()A.8 B.12 C.14 D.103.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1 B. C.2 D.4.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.5.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.6.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为()A. B. C. D.7.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.8.设函数的导函数,且满足,若在中,,则()A. B. C. D.9.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立10.集合的子集的个数是()A.2 B.3 C.4 D.811.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.12.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则________.14.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________.15.在某批次的某种灯泡中,随机抽取200个样品.并对其寿命进行追踪调查,将结果列成频率分布表如下:寿命(天)频数频率40600.30.4200.1合计2001某人从灯泡样品中随机地购买了个,如果这个灯泡的寿命情况恰好与按四个组分层抽样所得的结果相同,则的最小值为______.16.已知实数a,b,c满足,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.18.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.19.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.20.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.21.(12分)设函数f(x)=x2−4xsinx−4cosx.(1)讨论函数f(x)在[−π,π]上的单调性;(2)证明:函数f(x)在R上有且仅有两个零点.22.(10分)已知函数.(1)解不等式;(2)若函数存在零点,求的求值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果2、C【解析】

将,分别用和的形式表示,然后求解出和的值即可表示.【详解】设等差数列的首项为,公差为,则由,,得解得,,所以.故选C.【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.3、B【解析】

画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.4、B【解析】

为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.5、B【解析】

设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【详解】,设,则,两式相减得,∴,.故选:B.【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.6、B【解析】

计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.7、C【解析】

由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.8、D【解析】

根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.【详解】设,所以,因为当时,,即,所以,在上是增函数,在中,因为,所以,,因为,且,所以,即,所以,即故选:D【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.9、A【解析】

作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.10、D【解析】

先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.11、C【解析】

由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.12、B【解析】

先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】

根据垂直得到,代入计算得到答案.【详解】,则,解得,故,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力.14、【解析】令直线:,与椭圆方程联立消去得,可设,则,.可知,又,故.三角形周长与三角形内切圆的半径的积是三角形面积的二倍,则内切圆半径,其面积最大值为.故本题应填.点睛:圆锥曲线中最值与范围的求法有两种:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法,判别式法,重要不等式及函数的单调性法等.15、10【解析】

先求出a,b,根据分层抽样的比例引入正整数k表示n,从而得出的最小值.【详解】由题意得,a=0.2,b=80,由表可知,灯泡样品第一组有40个,第二组有60个,第三组有80个,第四组有20个,所以四个组的比例为2:3:4:1,所以按分层抽样法,购买的灯泡数为n=2k+3k+4k+k=10k(),所以的最小值为10.【点睛】本题考查分层抽样基本原理的应用,涉及抽样比、总体数量、每层样本数量的计算,属于基础题.16、【解析】

先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】

(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可【详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.解:(2)因为,所以.讨论:①当时,,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;②当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时,故当时,函数还有一个零点,不符合题意;③当时,令得,故函数的增区间为,减区间为,.又极小值,所以极大值.若,则,得,所以,所以当且时,,故此时函数还有一个零点,不符合题意.综上,所求实数的值为.【点睛】本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题18、(1);(2).【解析】

(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,,利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19、(1);(2)见解析.【解析】

(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【详解】(1),根据题意,在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,,所以存在,使得成立,所以的取值范围为。(2)当时,,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里要强调一点,在证明不等式时,通常是构造函数,将问题转化为函数的极值或最值来处理,本题是一道有高度的压轴解答题.20、(1)AB的中点的横坐标为;(2)证明见解析;(3)【解析】

设.(1)因为直线的倾斜角为,,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为.(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线AB的方程为,联立方程组,消去并整理得,则,设直线BM、CM的斜率分别为、,则,即=,即M,B,C三点共线.(3)根据题意,得直线GH的斜率存在,设该直线的方程为,设,联立方程组,消去并整理,得,由,整理得,又,所以,结合,得,当时,该直线为轴,即,此时椭圆上任意一点P都满足,此时符合题意;当时,由,得,代入椭圆C的方程,得,整理,得,再结合,得到,即,综上,得到实数的取值范围是.21、见解析【解析】

(1)f(x)=2x−4xcosx−4sinx+4sinx=,由f(x)=1,x∈[−π,π]得x=1或或.当x变化时,f(x)和f(x)的变化情况如下表:x1f(x)−1+1−1+f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论