


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30 B. C. D.622.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.3.如图,设为内一点,且,则与的面积之比为A. B.C. D.4.“”是“函数的图象关于直线对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.设全集集合,则()A. B. C. D.6.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.27.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.8.双曲线﹣y2=1的渐近线方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=09.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.10.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-211.已知函数的部分图象如图所示,则()A. B. C. D.12.复数()A. B. C.0 D.二、填空题:本题共4小题,每小题5分,共20分。13.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____14.已知数列满足对任意,若,则数列的通项公式________.15.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.16.若,则________,________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.18.(12分)已知函数,.(1)若不等式的解集为,求的值.(2)若当时,,求的取值范围.19.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.20.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.21.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)22.(10分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【题目详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【答案点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.2、B【答案解析】
先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【题目详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.【答案点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.3、A【答案解析】
作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【题目详解】如图,作交于点,则,由题意,,,且,所以又,所以,,即,所以本题答案为A.【答案点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.4、A【答案解析】
先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【题目详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【答案点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.5、A【答案解析】
先求出,再与集合N求交集.【题目详解】由已知,,又,所以.故选:A.【答案点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.6、B【答案解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【题目详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.7、A【答案解析】
作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【题目详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【答案点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.8、A【答案解析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.9、A【答案解析】
,从而可得,,再解不等式即可.【题目详解】由已知,,所以,,由,解得,.故选:A.【答案点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.10、A【答案解析】
求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【题目详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【答案点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.11、A【答案解析】
先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.【题目详解】由图象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),将代入得φ)=1,∴φ,结合0<φ,∴φ.∴.∴sin.故选:A.【答案点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.12、C【答案解析】略二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,由此求得,结合几何概型求得点取自三角形的概率.【题目详解】设是中点,因为,所以,所以三点共线且点是线段靠近的三等分点,故,所以此点取自内的概率是.故答案为:【答案点睛】本小题主要考查三点共线的向量表示,考查几何概型概率计算,属于基础题.14、【答案解析】
由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.【题目详解】由,得,数列是等比数列,首项为2,公比为2,,,,,满足上式,.故答案为:.【答案点睛】本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.15、【答案解析】
构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【题目详解】令,则是上的偶函数,,则在上递减,于是在上递增.由得,即,于是,则,解得.故答案为:【答案点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.16、【答案解析】
根据诱导公式和二倍角公式计算得到答案.【题目详解】,故.故答案为:;.【答案点睛】本题考查了诱导公式和二倍角公式,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【答案解析】
(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.【题目详解】(1)因为,由椭圆的定义得,,点在椭圆上,代入椭圆方程,解得,所以的方程为;(2)证明:设,,直线的斜率为,设直线的方程为,联立方程组,消去,整理得,所以,,直线的直线方程为,令,则,同理,所以:,代入整理得,所以为定值.【答案点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.18、(1);(2)【答案解析】试题分析:(1)求得的解集,根据集合相等,列出方程组,即可求解的值;(2)①当时,恒成立,②当时,转化为,设,求得函数的最小值,即可求解的取值范围.试题解析:(1)由,得,因为不等式的解集为,所以,故不等式可化为,解得,所以,解得.(2)①当时,恒成立,所以.②当时,可化为,设,则,所以当时,,所以.综上,的取值范围是.19、(1)见解析;(2)【答案解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【题目详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【答案点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.20、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【答案解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【题目详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..【答案点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.21、(1)分布列见解析;(2)406.【答案解析】
(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025实习生合同协议书 (标准版)
- 2025年二手住宅买卖合同
- 农户加入合作社协议
- 大学教育教学研究课题合同
- 个人房屋按季租金出租合同
- 北京市室内装修合同
- 学校保安用工合同
- 大厦商业广告位租赁合同
- 《2025车辆临时借用合同》
- 编导培训收费协议书
- 电缆沟、电缆管、电缆井专项施工方案
- 2024年公务员考试中财务知识的考察试题及答案
- 治理盐碱可行性报告
- 《人工智能技术基础》课件-第六章 知识图谱
- 2025年山东省济南市市中区中考物理一模试卷(无答案)
- (三模)吉林市2025届高三第三次模拟测试 英语试卷(含答案详解)
- 2024-2030年中国驱蚊用品行业市场深度分析及投资策略研究报告
- 广东省深圳市宝安区10校联考2023-2024学年八年级下学期4月期中物理试题(含答案)
- 2024年辽宁沈阳地铁集团有限公司所属公司招聘笔试真题
- 2024年中国移动招聘笔试真题
- 2025年安阳职业技术学院单招职业技能测试题库及答案一套
评论
0/150
提交评论