版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象可能为()A. B.C. D.2.若,,,则()A. B.C. D.3.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.4.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.5.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A. B. C.24 D.6.已知集合,,则等于()A. B. C. D.7.下列函数中,图象关于轴对称的为()A. B.,C. D.8.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A. B. C. D.9.设,,,则、、的大小关系为()A. B. C. D.10.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是()A. B. C. D.11.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.12.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过圆的圆心且与直线垂直的直线方程为__________.14.已知函数,若方程的解为,(),则_______;_______.15.(5分)已知为实数,向量,,且,则____________.16.设函数,若对于任意的,∈[2,,≠,不等式恒成立,则实数a的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.18.(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.(Ⅰ)证明:;(Ⅱ)设,,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.19.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,,,,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中,,.20.(12分)如图,在三棱锥中,,,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.21.(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,,,,,的大小关系.22.(10分)已知点、分别在轴、轴上运动,,.(1)求点的轨迹的方程;(2)过点且斜率存在的直线与曲线交于、两点,,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
先根据是奇函数,排除A,B,再取特殊值验证求解.【题目详解】因为,所以是奇函数,故排除A,B,又,故选:C【答案点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.2、C【答案解析】
利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【题目详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【答案点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.3、B【答案解析】
根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【题目详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【答案点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.4、A【答案解析】
根据程序框图输出的S的值即可得到空白框中应填入的内容.【题目详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【答案点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.5、A【答案解析】
推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【题目详解】解:在四面体中,为等边三角形,边长为6,,,,,,分别取的中点,连结,则,且,,,,平面,平面,,四面体的体积为:.故答案为:.【答案点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.6、A【答案解析】
进行交集的运算即可.【题目详解】,1,2,,,,1,.故选:.【答案点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.7、D【答案解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【题目详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【答案点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.8、A【答案解析】
画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【题目详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【答案点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.9、D【答案解析】
因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【答案点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.10、B【答案解析】
由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【题目详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【答案点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.11、D【答案解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【题目详解】设,,所以,,,所以.故选:D【答案点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.12、B【答案解析】
变形为,由得,转化在中,利用三点共线可得.【题目详解】解:依题:,又三点共线,,解得.故选:.【答案点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
根据与已知直线垂直关系,设出所求直线方程,将已知圆圆心坐标代入,即可求解.【题目详解】圆心为,所求直线与直线垂直,设为,圆心代入,可得,所以所求的直线方程为.故答案为:.【答案点睛】本题考查圆的方程、直线方程求法,注意直线垂直关系的灵活应用,属于基础题.14、【答案解析】
求出在上的对称轴,依据对称性可得的值;由可得,依据可求出的值.【题目详解】解:令,解得因为,所以关于对称.则.由,则由可知,,又因为,所以,则,即故答案为:;.【答案点睛】本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代入法,即令进行求解.15、5【答案解析】
由,,且,得,解得,则,则.16、【答案解析】试题分析:由题意得函数在[2,上单调递增,当时在[2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【答案解析】
(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【题目详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【答案点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题.18、(Ⅰ)证明见解析(Ⅱ)【答案解析】
(Ⅰ)由平面,可得,又因为是的中点,即得证;(Ⅱ)如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30°,列出等式,即得解.【题目详解】(Ⅰ)如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.(Ⅱ)由条件可知,,所以,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,,,,,,,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30°所以,即,解得,故此时.【答案点睛】本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.19、(1)见解析;(2)【答案解析】
(1)先判断得到随机变量的所有可能取值,然后根据古典概型概率公式和组合数计算得到相应的概率,进而得到分布列和期望.(2)由于去掉年的数据后不影响的值,可根据表中数据求出;然后再根据去掉年的数据后所剩数据求出即可得到回归直线方程.【题目详解】(1)由数据可知,,,,,五个年份考核优秀.由题意的所有可能取值为,,,,,,,.故的分布列为:所以.(2)因为,所以去掉年的数据后不影响的值,所以.又去掉年的数据之后,所以,从而回归方程为:.【答案点睛】求线性回归方程时要涉及到大量的计算,所以在解题时要注意运算的合理性和正确性,对于题目中给出的中间数据要合理利用.本题考查概率和统计的结合,这也是高考中常出现的题型,属于基础题.20、(1)见解析;(2).【答案解析】
(1)设中点为,连接、,利用等腰三角形三线合一的性质得出,利用勾股定理得出,由线面垂直的判定定理可证得平面,再利用面面垂直的判定定理可得出平面平面;(2)先确定三棱锥的外接球球心的位置,利用三角形相似求出外接球的半径,再由球体的体积公式可求得结果.【题目详解】(1)设中点为,连接、,因为,所以.又,所以,又由已知,,则,所以,.又为正三角形,且,所以,因为,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜边的中点,所以点是的外心,由(1)知平面,所以三棱锥的外接球的球心在上.在中,的垂直平分线与的交点即为球心,记的中点为点,则.由与相似可得,所以.所以三棱锥外接球的体积为.【答案点睛】本题考查面面垂直的证明,同时也考查了三棱锥外接球体积的计算,找出外接球球心的位置是解答的关键,考查推理能力与计算能力,属于中等题.21、(1)(2)(3)【答案解析】
(1)设“选取的试卷的调查结果是膳
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业空间石材采购合同范本
- 亲子餐厅装修施工人工合同
- 农产品保鲜运输协议合同
- 家具配送服务合同模板
- 亲子餐厅装修合同范文
- 学困生帮扶计划及总结共三篇
- 2024至2030年中国高安全路障数据监测研究报告
- 青春的故事作文7篇
- 酒店员工个人年终总结模板6篇
- 配电箱操作规程有哪些(9篇)
- 权变管理理论
- 4.2海水的性质第一课时教学设计高中地理人教版必修一
- 爱丽丝梦游仙境读书分享
- 《狂犬病暴露预防处置工作规范(2023年版)》解读课件
- 气候年景评估方法
- 一例骶尾部Ⅳ期压疮患者伤口的护理
- 中学开展性别平等教育的工作情况汇报多篇合集
- 高中化学课程思政的内涵及实施
- 仿生科学与技术
- 2017年单独招生考试技能模拟试题3
- 创业公司预算表格式
评论
0/150
提交评论