版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列四个函数图象中,当x>0时,函数值y随自变量x的增大而减小的是()A. B.C. D.2.如图,在△中,,,垂足为,若,,则的值为()A. B.C. D.3.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位4.在中,,,下列结论中,正确的是()A. B.C. D.5.若,则的值为()A.1 B. C. D.6.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC.若S△BDE:S△ADE=1:2.则S△DOE:S△AOC的值为()A. B. C. D.7.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A. B. C. D.8.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B. C. D.9.将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为()A.y=2(x﹣1)2+3 B.y=﹣2(x+3)2+1C.y=2(x﹣3)2﹣1 D.y=2(x+3)2+110.已知线段,,如果线段是线段和的比例中项,那么线段的长度是().A.8; B.; C.; D.1.11.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.12.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知相似.()A. B. C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=_____.14.如图,⊙O的直径AB垂直于弦CD,垂足为E,如果∠B=60°,AC=4,那么CD的长为_____.15.若,则=_____.16.反比例函数的图象具有下列特征:在所在象限内,的值随值增大而减小.那么的取值范围是_____________.17.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是_____.18.一个多边形的内角和为900°,这个多边形的边数是____.三、解答题(共78分)19.(8分)计算:+20﹣|﹣3|+(﹣)﹣1.20.(8分)(1)解方程:(2)如图,四边形是的内接四边形,若,求的度数.21.(8分)如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.7522.(10分)如图,抛物线经过点A(1,0),B(4,0)与轴交于点C.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线与轴交于点,点的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点作轴的平行线分别交轴和直线于点、.设点的横坐标为,线段的长度为.⑴求这条抛物线对应的函数表达式;⑵当点在第一象限的抛物线上时,求与之间的函数关系式;⑶在⑵的条件下,当时,求的值.24.(10分)已知二次函数y=ax²+bx-4(a,b是常数.且a0)的图象过点(3,-1).(1)试判断点(2,2-2a)是否也在该函数的图象上,并说明理由.(2)若该二次函数的图象与x轴只有一个交点,求该函数表达式.(3)已知二次函数的图像过(,)和(,)两点,且当<时,始终都有>,求a的取值范围.25.(12分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.26.如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】直接根据图象判断,当x>0时,从左到右图象是下降的趋势的即为正确选项.【详解】A、当x>0时,y随x的增大而增大,错误;B、当x>0时,y随x的增大而增大,错误;C、当x>0时,y随x的增大而减小,正确;D、当x>0时,y随x的增大先减小而后增大,错误;故选:C.【点睛】本题主要考查根据函数图象判断增减性,掌握函数的图象和性质是解题的关键.2、D【分析】在△中,根据勾股定理可得,而∠B=∠ACD,即可把求转化为求.【详解】在△中,根据勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故选D.【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.3、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4、C【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.5、D【解析】∵,∴==,故选D6、B【分析】依次证明和,利用相似三角形的性质解题.【详解】∵,
∴,
∴,
∵∥,∴,∴,
∵∥,∴,∴,
故选:B.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.7、A【详解】当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在DQ上运动时,△AEF的面积为y=AE•AF==(2<x≤4),图象为:故选A.8、D【分析】关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=−,与y轴的交点坐标为(0,c).【详解】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象不符,故A选项错误;
B.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,开口方向朝下,与图象不符,故B选项错误;
C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=−<0,则对称轴应在y轴左侧,与图象不符,故C选项错误;
D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.
故选D.【点睛】此题考查一次函数和二次函数的图象性质,解题关键在于要掌握它们的性质才能灵活解题.9、D【分析】根据二次函数图像的平移法则进行推导即可.【详解】解:将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为y=2(x+3)2+2﹣1,即y=2(x+3)2+1.故选:D.【点睛】本题考查了二次函数图像的平移,掌握并灵活运用“上加下减,左加右减”的平移原则是解题的关键.10、A【解析】根据线段比例中项的概念,可得,可得,解方程可求.【详解】解:若是、的比例中项,即,∴,∴,故选:.【点睛】本题考查了比例中项的概念,注意:求两条线段的比例中项的时候,负数应舍去.11、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.12、A【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:已知给出的三角形的各边分别为1、、,只有选项A的各边为、2、与它的各边对应成比例.故选:A.【点睛】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握.二、填空题(每题4分,共24分)13、【解析】试题分析:如图,设直线l与坐标轴的交点分别为A、B,∵∠AOB=∠PQB=90°,∠ABO=∠PBQ,∴∠OAB=∠OPQ,由直线的斜率可知:tan∠OAB=,∴tan∠OPQ=;故答案为.考点:1.一次函数图象上点的坐标特征;2.解直角三角形.14、1【解析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠B=60°,AC=1,即可求得BC的长,然后由AB⊥CD,可求得CE的长,又由垂径定理,求得答案.【详解】∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=60°,AC=1,∴BC=,∵AB⊥CD,∴CE=BC•sin60°==2,∴CD=2CE=1.故答案为1.【点睛】本题考查了圆周角定理、垂径定理以及三角函数的性质.注意直径所对的圆周角是直角,得到∠ACD=90°是关键15、【解析】=.16、【分析】直接利用当k>1,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<1,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:∵反比例函数的图象在所在象限内,y的值随x值的增大而减小,
∴k>1.
故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,掌握基本性质是解题的关键.17、19.2m【分析】根据在同一时物体的高度和影长成正比,设出教学楼高度即可列方程解答.【详解】设教学楼高度为xm,列方程得:解得x=19.2,故教学楼的高度为19.2m.故答案为:19.2m.【点睛】本题考查了相似三角形的应用,解题时关键是找出相等的比例关系,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18、1
【分析】根据多边形内角和定理:(n﹣2)×180°,列方程解答出即可.【详解】设这个多边形的边数为n,根据多边形内角和定理得:(n﹣2)×180°=900°,解得n=1.故答案为:1【点睛】本题主要考查了多边形内角和定理的应用,熟记多边形内角和公式并准确计算是解题的关键.三、解答题(共78分)19、2【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4+1﹣3﹣2=2.【点睛】本题考查了负指数幂的性质、零指数幂的性质和绝对值的性质,解题的关键是掌握上述运算的性质.20、(1);(2)136°【分析】(1)提出公因式(x-2),将方程转化为两个因式的积等于零的形式,即可得出两个一元一次方程,再求解即可;(2)先根据同弧所对的圆周角是圆心角的一半求出∠BAD,然后根据圆内接四边形的对角互补即可求出∠BCD.【详解】(1)解:,,∴或,解得:;(2)解:∵,∴,∵,∴,即的度数是136°.【点睛】本题考查了因式分解法解一元二次方程和圆周角定理、圆内接四边形的性质,正确的将方程转化为两个因式的积等于零的形式是解决(1)的关键;熟记圆周角定理和圆内接四边形的性质是解决(2)的关键.21、120m【分析】在Rt△ACD和Rt△BCD中,设CD=x,分别用x表示AD和BD的长度,然后根据已知AB=40m,列出方程求出x的值,继而可求得气球离地面的高度.【详解】设CD=x,在Rt△BCD中,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠A=37°,∴tan37°=,∴AD=,∵AB=40m,∴AD﹣BD=﹣x=40,解得:x=120,∴气球离地面的高度约为120(m).答:气球离地面的高度约为120m.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数解直角三角形.22、(1);(2)9;(3)存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【分析】(1)根据抛物线经过A、B两点,带入解析式,即可求得a、b的值.(2)根据PA=PB,要求四边形PAOC的周长最小,只要P、B、C三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM为直角三角形,便可分为两种情况QM⊥BC和QM⊥BO,再结合△QBM∽△CBO,根据相似比例便可求解.【详解】解:(1)将点A(1,0),B(4,0)代入抛物线中,得:解得:所以抛物线的解析式为.(2)由(1)可知,抛物线的对称轴为直线.连接BC,交抛物线的对称轴为点P,此时四边形PAOC的周长最小,最小值为OA+OC+BC=1+3+5=9.(3)当QM⊥BC时,易证△QBM∽△CBO所以,又因为△CQM为等腰三角形,所以QM=CM.设CM=x,则BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.过点M作NM⊥OB于N,则MN//OC,所以,即,所以,所以点M的坐标为()当QM⊥BO时,则MQ//OC,所以,即设QM=3t,则BQ=4t,又因为△CQM为等腰三角形,所以QM=CM=3t,BM=5-3t又因为QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以点M的坐标为().综上所述,存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.23、(1);(2)当时,,当时,;(3)或.【分析】(1)由题意直接根据待定系数法,进行分析计算即可得出函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得BC的解析式,根据E点的纵坐标,可得E点的横坐标,根据两点间的距离,可得答案;(3)由题意根据PE与DE的关系,可得关于m的方程,根据解方程根据解方程,即可得出答案.【详解】解:(1)由题意得,解得∴这条抛物线对应的函数表达式是.(2)当时,.∴点的坐标是.设直线的函数关系式为.由题意得解得∴直线的函数关系式为.∵PD∥x轴,∴.∴.当时,如图①,.当时,如图②,.(3)当时,,.∵,∴.解得(不合题意,舍去),.当时,,.∵,∴.解得(不合题意,舍去),.综上所述,当时,或.【点睛】本题考查二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴直线上点的纵坐标相等得出E点的纵坐标是解题关键;利用PE与DE的关系得出关于m的方程是解题的关键.24、(1)不在;(2);;(3)【解析】(1)将点代入函数解析式,求出a和b的等式,将函数解析式改写成只含有a的形式,再将点代入验证即可;(2)令,得到一个一元二次方程,由题意此方程只有一个实数根,由根的判别式即可求出a的值,从而可得函数表达式;(3)根据函数解析式求出其对称轴,再根据函数图象的增减性判断即可.【详解】(1)二次函数图像过点代入得,,代入得将代入得,得,不成立,所以点不在该函数图像上;(2)由(1)知,与x轴只有一个交点只有一个实数根,或当时,,所以表达式为:当时,,所以表达式为:;(3)对称轴为当时,函数图象如下:若要满足时,恒大于,则、均在对称轴左侧,当时,函数图象如下:,此时,必小于综上,所求的a的取值范围是:.【点睛】本题考查了二次函数图象的性质(与x的交点问题、对称轴、增减性),熟记性质是解题关键.25、(1)x1=﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024广告制作合同范本简单
- 2024木门订购合同
- 2024个人房屋租赁合同范
- 2024年度培训项目外包合同:培训机构与外包公司之间的合作协议
- 2024商务信息咨询合同
- 2024保险合同终止申请书
- 供货协议合同
- 2024年度水上乐园主题公园建设合同2篇
- 招商服务合同增长策略
- 垃圾桶配件模具采购协议
- 2024-2023-2024年中考语文三年真题分类汇编(全国版)6标点 试卷(含答案解析)
- 电力电子技术(广东工业大学)智慧树知到期末考试答案章节答案2024年广东工业大学
- 金融借款合同纠纷代理解决方案
- 大连辽宁大连理工大学会计核算中心自聘人员招聘笔试历年典型考题及考点附答案解析
- 清华大学2024年强基计划数学试题(解析)
- 2024年东南亚精密铸造市场深度研究及预测报告
- 厨房废油回收合同
- 2024年俄罗斯财务会计咨询服务行业应用与市场潜力评估
- JT-T-1051-2016城市轨道交通运营突发事件应急预案编制规范
- 泸州老窖“浓香文酿杯”企业文化知识竞赛考试题库大全-上(单选题)
- GB/T 2039-2024金属材料单轴拉伸蠕变试验方法
评论
0/150
提交评论