2022年江西省抚州市金溪县数学九上期末学业质量监测模拟试题含解析_第1页
2022年江西省抚州市金溪县数学九上期末学业质量监测模拟试题含解析_第2页
2022年江西省抚州市金溪县数学九上期末学业质量监测模拟试题含解析_第3页
2022年江西省抚州市金溪县数学九上期末学业质量监测模拟试题含解析_第4页
2022年江西省抚州市金溪县数学九上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是;④方程有一个实根大于;⑤当时,随增大而增大.其中结论正确的个数是()A.个 B.个 C.个 D.个2.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.3.如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为()A.2 B. C.3 D.4.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°5.如图,已知,且,则()A. B. C. D.6.如图,下列四个三角形中,与相似的是()A. B. C. D.7.如图,在Rt△ABC中,∠BAC=90º,AH是高,AM是中线,那么在结论①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中错误的个数有()A.0个 B.1个 C.2个 D.3个8.如果,、分别对应、,且,那么下列等式一定成立的是()A. B.的面积:的面积C.的度数:的度数 D.的周长:的周长9.已知xy=1A.32 B.13 C.210.如图,已知为的直径,点,在上,若,则()A. B. C. D.11.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.12.设,,是抛物线上的三点,则的大小关系为()A. B. C. D.二、填空题(每题4分,共24分)13.若,,则______.14.某校共1600名学生,为了解学生最喜欢的课外体育活动情况,学校随机抽查了200名学生,其中有92名学生表示喜欢的项目是跳绳,据此估计全校喜欢跳绳这项体育活动的学生有____________人.15.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为______.

17.如图,在△ABC中,DE∥BC,,则=_____.18.若二次函数的图象与x轴只有一个公共点,则实数n=______.三、解答题(共78分)19.(8分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.20.(8分)已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.21.(8分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.求出每天的销售利润元与销售单价元之间的函数关系式;求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量22.(10分)李明从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问购买这张矩形铁皮共花了多少钱?23.(10分)解方程:x2+2x=1.24.(10分)某商场将进货单价为30元的商品以每个40元的价格售出时,平均每月能售出600个,调查表明:这种商品的售价每上涨1元,其销售量就减少10个.(1)为了使平均每月有10000元的销售利润且尽快售出,这种商品的售价应定为每个多少元?(2)当该商品的售价为每个多少元时,商场销售该商品的平均月利润最大?最大利润是多少?25.(12分)如图,一次函数和反比例函数的图象相交于两点,点的横坐标为1.(1)求的值及,两点的坐标(1)当时,求的取值范围.26.如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.

参考答案一、选择题(每题4分,共48分)1、A【解析】根据二次函数的图象与性质进行解答即可.【详解】解:∵抛物线开口方向向下∴a<0又∵对称轴x=1∴∴b=-2a>0又∵当x=0时,可得c=3∴abc<0,故①正确;∵b=-2a>0,∴y=ax2-2ax+c当x=-1,y<0∴a+2a+c<0,即3a+c<0又∵a<0∴4a+c<0,故②错误;∵,c=3∴∴x(ax-b)=0又∵b=-2a∴,即③正确;∵对称轴x=1,与x轴的左交点的横坐标小于0∴函数图像与x轴的右交点的横坐标大于2∴的另一解大于2,故④正确;由函数图像可得,当时,随增大而增大,故⑤正确;故答案为A.【点睛】本题考查二次函数的图象与性质,熟练运用二次函数的基本知识和正确运用数形结合思想是解答本题的关键.2、D【解析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.3、D【分析】在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根据根与系数的关系即可求得a的值.【详解】过点C作CD⊥AB于点D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,设ax2+bx+c=0的两根分别为x1与x2(x1≤x2),∴A(x1,0),B(x2,0).依题意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化简得:m2﹣m(x1+x2)+9+x1x2=0,∴m2m+90,∴am2+bn+c=﹣9a.∵(m,﹣3)是图象上的一点,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a.故选:D.【点睛】本题是二次函数的综合试题,考查了二次函数的性质和图象,解答本题的关键是注意数形结合思想.4、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.5、D【分析】根据相似三角形的面积比等于相似比的平方即可解决问题.【详解】解:∵,∴,∵,∴,故选:D.【点睛】此题考查相似三角形的性质,解题的关键是熟练掌握相似三角形的性质解决问题,记住相似三角形的面积比等于相似比的平方.6、C【分析】△ABC是等腰三角形,底角是75°,则顶角是30°,结合各选项是否符合相似的条件即可.【详解】由题图可知,,所以∠B=∠C=75°,所以.根据两边成比例且夹角相等的两个三角形相似知,与相似的是项中的三角形故选:C.【点睛】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,此题难度不大,但综合性较强.7、B【分析】根据直角三角形斜边上的中线性质和等腰三角形的性质得出∠B=∠BAM,根据已知条件判断∠B=∠MAH不一定成立;根据三角形的内角和定理及余角的性质得出∠B=∠CAH.【详解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中线,∴AM=BM,∴∠B=∠BAM,①正确;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②错误;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正确.故选:B.【点睛】本题主要考查对直角三角形斜边上的中线性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质进行推理是解此题的关键.8、D【解析】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A:BC和DE不是对应边,故错;B:面积比应该是,故错;C:对应角相等,故错;D:周长比等于相似比,故正确.故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.9、A【解析】由题干可得y=2x,代入x+yy【详解】∵xy∴y=2x,∴x+yy故选A.【点睛】本题考查了比例的基本性质:两内项之积等于两外项之积.即若ab=cd,则10、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.11、D【分析】根据中心对称图形以及轴对称图形的定义逐项判断即可.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.不是中心对称图形,是轴对称图形,此选项错误;B.是中心对称图形,不是轴对称图形,此选项错误;C.不是中心对称图形,是轴对称图形,此选项错误;D.既是中心对称图形,又是轴对称图形,此选项正确;故选:D.【点睛】本题考查的知识点是识别中心对称图形以及轴对称图形,掌握中心对称图形以及轴对称图形的特征是解此题的关键.12、D【分析】根据二次函数的性质得到抛物线的开口向上,对称轴为直线x=-2,然后根据三个点离对称轴的远近判断函数值的大小.【详解】,∵a=1>0,∴抛物线开口向上,对称轴为直线x=-2,∵离直线x=-2的距离最远,离直线x=-2的距离最近,∴.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.二、填空题(每题4分,共24分)13、28【分析】先根据完全平方公式把变形,然后把,代入计算即可.【详解】∵,,∴(a+b)2-2ab=36-8=28.故答案为:28.【点睛】本题考查了完全平方公式的变形求值,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.14、736【分析】由题意根据样本数据的比值和相对应得总体数据比值相同进行分析求解即可.【详解】解:设全校喜欢跳绳这项体育活动的学生有m人,由题意可得:,解得.所以全校喜欢跳绳这项体育活动的学生有736人.故答案为:736.【点睛】本题考查的是通过样本去估计总体对应的数据,熟练掌握通过样本去估计总体对应数据的方法是解题的关键.15、1【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为1.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为1,故答案为:1.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.16、3或1【解析】利用切线的性质得到点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),然后分别计算点(-1,0)和(1,0)到(-4,0)的距离即可.【详解】若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),而-1-(-4)=3,1-(-4)=1,所以点P的运动距离为3或1.故答案为3或1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.17、【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE∥BC,,∴,由平行条件易证△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.18、1.【解析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案为1.三、解答题(共78分)19、(1);(2)【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到所有可能的情况,进一步即可求得结果.【详解】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车分别为甲,乙,画树状图得:由树状图可知:两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=.【点睛】本题考查了画树状图或列表法求两次事件的概率,属于常考题型,难度不大,熟练掌握画树状图或列表法求概率的方法是解题的关键.20、(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解析】(1)将点(2,3),(3,0)的坐标直接代入y=-x2+bx+c即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y=-x2+bx+c得,解得,故答案为:b=2,c=3;(2)解:令x=0,c=3,二次函数图像与y轴的交点坐标为则(0,3),二次函数解析式为y=y=-x2+2x+3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x<2时,y的取值范围是:-12<y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.21、;当时,;销售单价应该控制在82元至90元之间.【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:;,抛物线开口向下.,对称轴是直线,当时,;当时,,解得,.当时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得,解得.,,销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.22、购买这张矩形铁皮共花了700元钱【解析】设矩形铁皮的宽为x米,则长为米,根据长方形的体积公式结合长方体运输箱的容积为15立方米,即可得出关于x的一元二次方程,解之取其正值即可得出x的值,再根据矩形的面积公式结合铁皮的单价即可求出购买这张矩形铁皮的总钱数.【详解】设矩形铁皮的宽为x米,则长为米,根据题意得:,整理,得:(不合题意,舍去),∴20x(x+2)=20×5×7=700.答:购买这张矩形铁皮共花了700元钱.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、x1=﹣1+,x2=﹣1﹣【解析】利用配方法解一元二次方程即可.解:∵x2+2x=1,∴x2+2x+1=1+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论