版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8/85.3诱导公式本节课选自《普通高中课程标准数学教科书-必修第一册一》(人教A版)第五章《三角函数》,本节课是第5课时。本节主要是推导诱导公式二、三、四、五、六,并利用它们解决一些求值、化简、证明三角恒等式。本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证明等问题。在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体现,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识特别是在本课时的三个转化问题引入后,为什么确定180°+a角为第一研究对象,a角为第二研究对象,正是化归思想的运用。课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角,学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习。课程目标学科素养A.借助单位圆,推导出正弦、余弦和正切的诱导公式;B.能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题;C.了解未知到已知、复杂到简单的转化过程,培养学生的化归思想。1.数学抽象:利用单位圆找不同角的关系;2.逻辑推理:诱导公式的推导;3.数学运算:有关三角函数求值、化简和恒等式证明问题。1.教学重点:诱导公式的记忆、理解、运用;2.教学难点:诱导公式的推导、记忆及符号的判断。多媒体教学过程教学设计意图核心素养目标复习回顾,温故知新1.任意角三角函数的定义【答案】设角它的终边与单位圆交于点。那么(1)2.诱导公式一,其中,。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角-α与α的终边有何位置关系?【答案】终边关于x轴对称(3).角与α的终边有何位置关系?【答案】终边关于y轴对称(4).角与α的终边有何位置关系?【答案】终边关于原点对称思考2:已知任意角α的终边与单位圆相交于点P(x,y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x,y)关于原点对称点P1(-x,-y)点P(x,y)关于x轴对称点P2(x,-y)点P(x,y)关于y轴对称点P3(-x,y)探究一如图,角的三角函数值与的三角函数值之间有什么关系?角π+与角的终边关于原点O对称,,(公式二)sin(π+)=sin,cos(π+)=cos,tan(π+)=tan。探究二角与的三角函数值之间有什么关系角与角的终边关于x轴对称,有。。(公式三)sin()=sin,cos()=cos,tan()=tan。探究三根据上两组公式的推导,你能否推导出角与角的三角函数值之间的关系?角与角的终边关于轴对称,故有所以,(公式二)sin(π-)=sin,cos(π-)=cos,tan(π-)=-tan。思考3:这四个诱导公式有什么规律?的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号.总结为一句话:函数名不变,符号看象限。例1.求下列三角函数值(1)cos225°;(2)sin;(3)sin();(4)tan(-2040°).活动:这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合解决这个问题.解:(1)cos225°=cos(180°+45°)=-cos45°=;(2)sin=sin(2π)=sin=sin=sin=;(3)sin()=-sin=-sin(5π+)=-(-sin)=;(4)tan(-2040°)=-tan2040°=-tan(6×360°-120°)=tan120°=tan(180°-60°)=-tan60°=.思考4:通过例题,你对诱导公式一、二、三、四有什么进一步的认识?你能归纳任意角的三角函数化为锐角三角函数的步骤吗?利用公式一—四把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行:上述步骤体现了由未知转化为已知的转化与化归的思想方法.例2.化简:解析见教材探究四作P(x,y)关于直线的对称点P1,以OP1为终边的角与角有什么关系?角与角的三角函数值之间有什么关系?,,公式五探究五:作点P(x,y)关于y轴的对称点P5,又能得到什么结论?。,公式六思考5:你能概括一下公式五、六的共同特点和规律吗?【答案】的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.思考6:诱导公式可统一为的三角函数与α的三角函数之间的关系,你有什么办法记住这些公式?【答案】口诀:奇变偶不变,符号看象限口诀的意义:证明:。解析见教材例4化简解析见教材例5已知,且,求的值。解析见教材通过复习上节所学任意角三角函数的定义与诱导公式一,引入本节新课。建立知识间的联系,提高学生概括、类比推理的能力。通过思考让学生了解角终边之间的关系,为推导诱导公式作铺垫,提高学生的解决问题、分析问题的能力。通过探究,由图形观察角的三角函数值与的三角函数值之间有什么关系,进而得到诱导公式二,提高学生分析问题、概括能力。通过探究,由图形观察角的三角函数值与的三角函数值之间有什么关系,进而得到诱导公式三,提高学生分析问题、概括能力。通过探究,由图形观察角的三角函数值与的三角函数值之间有什么关系,进而得到诱导公式三,提高学生分析问题、概括能力。通过思考,寻找这四个诱导公式的共同规律,提高学生分析问题、概括能力。通过例题练习诱导公式,进一步理解诱导公式的作用,提高学生解决问题的能力。通过思考总结用诱导公式求任意角三角函数值的步骤,提高学生解决问题的能力。通过探究,由图形观察角和角的三角函数值与的三角函数值之间有什么关系,进而得到诱导公式五、六,提高学生分析问题、概括能力。通过思考,寻找诱导公式的共同规律,提高学生分析问题、概括能力。通过例题的讲解,让学生进一步理解用诱导公式化简三角函数关系式、求任意角的三角函数值,提高学生解决与分析问题的能力。三、达标检测1.下列各式不正确的是()A.sin(α+180°)=-sinαB.cos(-α+β)=-cos(α-β)C.sin(-α-360°)=-sinαD.cos(-α-β)=cos(α+β)【解析】cos(-α+β)=cos[-(α-β)]=cos(α-β),故B项错误.【答案】B2.sin600°的值为()A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(\r(3),2)D.-eq\f(\r(3),2)【解析】sin600°=sin(720°-120°)=-sin120°=-sin(180°-60°)=-sin60°=-eq\f(\r(3),2).故选D.【答案】D3.cos1030°=()A.cos50°B.-cos50°C.sin50°D.-sin50°【解析】cos1030°=cos(3×360°-50°)=cos(-50°)=cos50°.【答案】A4.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))<0,且coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))>0,则θ是()A.第一象限角 B.第二象限角C.第三角限角 D.第四象限角【解析】由于sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))=cosθ<0,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))=sinθ>0,所以角θ的终边落在第二象限,故选B.【答案】B5.已知sinφ=eq\f(6,11),求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(11π,2)+φ))+sin(3π-φ)的值.【解】∵sinφ=eq\f(6,11),∴coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(11π,2)+φ))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(6π-\f(π,2)+φ))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,2)+φ))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-φ))=sinφ=eq\f(6,11),∴coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(11π,2)+φ))+sin(3π-φ)=eq\f(6,11)+sin(π-φ)=eq\f(6,11)+sinφ=eq\f(12,11).通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。四、小结1.诱导公式;2.诱导公式的记忆;3.利用诱导公式求任意角的三角函数值的步骤。五、作业习题5.34,6题通过总结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,精心编排了导学精要,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用己学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察—一归纳—一概括一一应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权日主题活动总结范文
- Lactupicrin-Standard-生命科学试剂-MCE
- KRASG12C-IN-14-生命科学试剂-MCE
- JP-2-249-生命科学试剂-MCE
- 级配砾石基层施工方案
- 方案一:人力资源招聘流程方案
- 工程协调管理方法方案
- 山庄酒店装修合同专业文档
- 宠物医院装修合作协议
- 城市综合体项目居间合同
- 天津市河西区2022-2023学年八年级上学期期中英语试题 (含答案解析)
- GB/T 588-2009船用法兰青铜截止止回阀
- GB/T 5780-2016六角头螺栓C级
- GB/T 31997-2015风力发电场项目建设工程验收规程
- 反歧视虐待、骚扰控制程序A
- GA/T 383-2014法庭科学DNA实验室检验规范
- 新概念英语第一册L121-L126考试卷试题
- 高压电工复审培训课件
- 大数据和人工智能知识考试题库600题(含答案)
- 计划的组织实施演示
- 中央企业全面风险管理指引总则课件
评论
0/150
提交评论