下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.复数在复平面内对应的点为则()A. B. C. D.3.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]4.已知集合A,则集合()A. B. C. D.5.若,则下列不等式不能成立的是()A. B. C. D.6.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A. B. C. D.7.曲线在点处的切线方程为,则()A. B. C.4 D.88.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.9.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.10.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.11.若各项均为正数的等比数列满足,则公比()A.1 B.2 C.3 D.412.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本题共4小题,每小题5分,共20分。13.若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为________.14.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.15.已知实数,满足,则的最大值为______.16.设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.①求;②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.18.(12分)随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:考试情况男学员女学员第1次考科目二人数1200800第1次通过科目二人数960600第1次未通过科目二人数240200若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.19.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.20.(12分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.22.(10分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).记数表中位于第i行第j列的元素为,其中(,,).如:,.(1)设,,请计算,,;(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,,对于整数t,t不属于数表M,求t的最大值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【题目详解】解:由已知得,是的一条对称轴,且使取得最值,则,,,,故选:C.【答案点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.2、B【答案解析】
求得复数,结合复数除法运算,求得的值.【题目详解】易知,则.故选:B【答案点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.3、A【答案解析】
根据符号函数的解析式,结合f(x)的单调性分析即可得解.【题目详解】根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g(x)]=1,当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g(x)]=0,当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g(x)]=﹣1,综合有:sgn[g(x)]=sgn(x);故选:A.【答案点睛】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.4、A【答案解析】
化简集合,,按交集定义,即可求解.【题目详解】集合,,则.故选:A.【答案点睛】本题考查集合间的运算,属于基础题.5、B【答案解析】
根据不等式的性质对选项逐一判断即可.【题目详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【答案点睛】本题考查不等关系和不等式,属于基础题.6、B【答案解析】
根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【题目详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【答案点睛】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.7、B【答案解析】
求函数导数,利用切线斜率求出,根据切线过点求出即可.【题目详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【答案点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.8、A【答案解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.9、D【答案解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【题目详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【答案点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.10、B【答案解析】
根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【题目详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.【答案点睛】本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.11、C【答案解析】
由正项等比数列满足,即,又,即,运算即可得解.【题目详解】解:因为,所以,又,所以,又,解得.故选:C.【答案点睛】本题考查了等比数列基本量的求法,属基础题.12、D【答案解析】
通过变形,通过“左加右减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【答案点睛】本题主要考查三角函数的平移变换,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.【题目详解】由已知,,,又,故,,所以的最小值为.故答案为:.【答案点睛】本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.14、【答案解析】
求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【题目详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【答案点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.15、【答案解析】
画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【题目详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【答案点睛】本题考查目标函数为斜率型的规划问题,属基础题.16、【答案解析】
由椭圆的标准方程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【题目详解】由知,焦点,所以直线:,代入得,即,设,,故由定义有,,所以。【答案点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析;(2)①;②,.【答案解析】
(1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件,相互独立,计算概率后可得分布列;(2)由(1)得,由两轮的得分可计算出,计算时可先计算出经过2轮后甲的得分的分布列(的取值为),然后结合的分布列和的分布可计算,由,代入,得两个方程,解得,从而得到数列的递推式,变形后得是等比数列,由等比数列通项公式得,然后用累加法可求得.【题目详解】(1)记一轮投球,甲命中为事件,乙命中为事件,相互独立,由题意,,甲的得分的取值为,,,,∴的分布列为:-101(2)由(1),,同理,经过2轮投球,甲的得分取值:记,,,则,,,,由此得甲的得分的分布列为:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴数列是等比数列,公比为,首项为,∴.∴.【答案点睛】本题考查随机变量的概率分布列,考查相互独立事件同时发生的概率,考查由数列的递推式求通项公式,考查学生的转化与化归思想,本题难点在于求概率分布列,特别是经过2轮投球后甲的得分的概率分布列,这里可用列举法写出各种可能,然后由独立事件的概率公式计算出概率.18、(1);(2)见解析.【答案解析】
事件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中)(1)这对夫妻是否通过科目二考试相互独立,利用独立事件乘法公式即可求得;(2)补考费用之和为元可能取值为400,600,800,1000,1200,根据题意可求相应的概率,进而可求X的数学期望.【题目详解】事件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中).(1)事件表示这对夫妻考科目二都不需要交补考费..(2)的可能取值为400,600,800,1000,1200.,,,,.则的分布列为:40060080010001200故(元).【答案点睛】本题以实际问题为素材,考查离散型随机变量的概率及期望,解题时要注意独立事件概率公式的灵活运用,属于基础题.19、(1):,:;(2)【答案解析】
(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程转化为普通方程.(2)将直线的参数方程代入曲线的普通方程,结合直线参数的几何意义以及根与系数关系,求得的值.【题目详解】(1)的直角坐标方程为,即,则的极坐标方程为.曲线的普通方程为.(2)直线的参数方程为(为参数,为的倾斜角),代入曲线的普通方程,得.设,对应的参数分别为,,所以,在的两侧.则.【答案点睛】本小题主要考查直角坐标化为极坐标,考查参数方程化为普通方程,考查直线参数方程,考查直线参数的几何意义,属于中档题.20、(1)没有(2)分布列见解析,(3)证明见解析【答案解析】
(1)根据公式计算卡方值,再对应卡值表判断..(2)根据题意,随机变量的可能取值为0,1,2,3,4,分别求得概率,写出分布列,根据期望公式求值.(3)因为至少8个的偶数个十字路口,所以,即.要证,即证,根据组合数公式,即证;易知有.成立.设个路口中有个路口种植杨树,下面分类讨论①当时,由论证.②当时,由论证.③当时,,设,再论证当时,取得最小值即可.【题目详解】(1)本次实验中,,故没有99.9%的把握认为喜欢树木的种类与居民所在的城市具有相关性.(2)依题意,的可能取值为0,1,2,3,4,故,,01234故.(3)∵,∴.要证,即证;首先证明:对任意,有.证明:因为,所以.设个路口中有个路口种植杨树,①当时,,因为,所以,于是.②当时,,同上可得③当时,,设,当时,,显然,当即时,,当即时,,即;,因此,即.综上,,即.【答案点睛】本题考查独立性检验、离散型随机变量的分布列以及期望、排列组合,还考查运算求解能力以及必然与或然思想,属于难题.21、(1);(2)【答案解析】
(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【题目详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院环境卫生管理制度
- 主题班会课件:愤怒情绪的调控
- 《用法律保护自己》课件
- 《OGNL与标签库》课件
- 教育局聘任小学校长协议书(2篇)
- 2024年版财产分割协议:离婚双方适用2篇
- 2024年度塔吊司机承包劳务合作协议书3篇
- 2024年版标准化建筑工程协议范本版
- 2025年阳泉道路运输从业人员资格考试内容有哪些
- 2025年拉萨货运从业资格证模拟考试保过版
- Unit5 The colourful world (说课稿)-2024-2025人教版(PEP)(2024)英语三年级上册
- Unit 1 Life Choices Topic Talk说课稿 2024-2025学年高中英语北师大版必修第一册
- 吊装作业事故应急演练方案范文
- 快乐读书吧:中国民间故事(专项训练)-2023-2024学年五年级语文上册(统编版)
- 山东省烟台市2023-2024学年高一上学期期末考试 化学 含解析
- 科研入门讲座模板
- 2024年度护士长工作总结
- 餐饮服务电子教案 学习任务4 摆台技能(1)-中餐零点餐台摆台
- 公司外部合作伙伴管理制度
- 11-三角形-八大题型(拔尖)
- 节能环保协议书
评论
0/150
提交评论