版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的展开式中有理项有()A.项 B.项 C.项 D.项2.设,集合,则()A. B. C. D.3.已知函数,,,,则,,的大小关系为()A. B. C. D.4.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.5.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则()A. B. C. D.6.下列与的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)7.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.78.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.9.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.10.若复数z满足,则()A. B. C. D.11.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则12.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________.14.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.15.设等比数列的前项和为,若,则数列的公比是.16.已知a,b均为正数,且,的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.18.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.19.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.20.(12分)如图,在中,已知,,,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.21.(12分)在平面直角坐标系中,设,过点的直线与圆相切,且与抛物线相交于两点.(1)当在区间上变动时,求中点的轨迹;(2)设抛物线焦点为,求的周长(用表示),并写出时该周长的具体取值.22.(10分)设的内角、、的对边长分别为、、.设为的面积,满足.(1)求;(2)若,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.2、B【解析】
先化简集合A,再求.【详解】由得:,所以,因此,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.3、B【解析】
可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.4、D【解析】
连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题5、B【解析】
,将,代入化简即可.【详解】.故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.6、C【解析】
利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2)与终边相同的角=+其中.7、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.8、D【解析】
根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.9、D【解析】
设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.10、D【解析】
先化简得再求得解.【详解】所以.故选:D【点睛】本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.11、C【解析】
根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.12、B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率.注意对称性,问题应该有两解.【详解】直线过抛物线的焦点,,过,分别作的准线的垂线,垂足分别为,,由抛物线的定义知,.因为,所以.因为,所以,从而.设直线的倾斜角为,不妨设,如图,则,,同理,则,解得,,由对称性还有满足题意.,综上,.【点睛】本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键.14、【解析】
先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.15、.【解析】
当q=1时,.当时,,所以.16、【解析】
本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.【详解】因为,所以,当且仅当,即、时取等号,故答案为:.【点睛】本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)最大值为.【解析】
(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最小值,进而可得出实数的最大值.【详解】(1).当时,函数单调递减,则;当时,函数单调递增,则;当时,函数单调递增,则.综上所述,,所以;(2)因为恒成立,且,,所以恒成立,即.因为,当且仅当时等号成立,所以,实数的最大值为.【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.18、(1)曲线表示的是焦点为,准线为的抛物线;(2)8.【解析】试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的线段的长.试题解析:(1)由可得,即,∴曲线表示的是焦点为,准线为的抛物线.(2)将代入,得,∴,∵,∴,∴直线的参数方程为(为参数).将直线的参数方程代入得,由直线参数方程的几何意义可知,.19、(1)或;(2).【解析】
(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围.【详解】(1)曲线C的极坐标方程是化为直角坐标方程为:直线的直角坐标方程为:圆心到直线l的距离(弦心距)圆心到直线的距离为:或(2)曲线的方程可化为,其参数方程为:为曲线上任意一点,的取值范围是20、(1);(2).【解析】
(1)平面平面,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角.【详解】(1)如图,以为原点,在平面内垂直于的直线为轴所在的直线分别为轴,轴,建立空间直角坐标系,则,设为平面的一个法向量,由得,取,则因为平面的一个法向量为由平面平面,得所以即.(2)设二面角的大小为,当平面的一个法向量为,综上,二面角的余弦值为.【点睛】本题考查用空间向量求平面间的夹角,平面与平面垂直的判定,二面角的平面角及求法,难度一般.21、(1).(2)的周长为,时,的周长为【解析】
(1)设的方程为,根据题意由点到直线的距离公式可得,将直线方程与抛物线方程联立可得,设、坐标分别是、,利用韦达定理以及中点坐标公式消参即可求解.(2)根据抛物线的定义可得,由(1)可得,再利用弦长公式即可求解.【详解】(1)设的方程为于是联立设、坐标分别是、则设的中点坐标为,则消去参数得:(2)设,,由抛物线定义知,,∴由(1)知∴,,的周长为时,的周长为【点睛】本题考查了动点的轨迹方程、直线与抛物线的位置关系、抛物线的定义、弦长公式,考查了计算能力,属于中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度食品行业员工工资支付合同范本3篇
- 2024智慧城市公共安全监控系统合同
- 2025年度智能厨房设备承包服务合同范本3篇
- 二零二五年餐厅合伙人联合推广宣传合同3篇
- 二零二五版单位职工食堂员工健康饮食指导承包协议3篇
- 2024高端装备制造业国际合作框架合同
- 二零二五年新材料企业股份代持与研发合作合同3篇
- 2025年度采矿权抵押融资法律服务协议书3篇
- 2025年度绿色食品配送中心员工劳务合同范本3篇
- 2024年长期战略联盟协议
- 2025年度土地经营权流转合同补充条款范本
- 南通市2025届高三第一次调研测试(一模)地理试卷(含答案 )
- Python试题库(附参考答案)
- 聚酯合成副反应介绍
- DB37-T 1342-2021平原水库工程设计规范
- 电除颤教学课件
- 广东省药品电子交易平台结算门户系统会员操作手册
- DB32T 3960-2020 抗水性自修复稳定土基层施工技术规范
- 大断面隧道设计技术基本原理
- 41某31层框架结构住宅预算书工程概算表
- 成都市国土资源局关于加强国有建设用地土地用途变更和
评论
0/150
提交评论