2023学年山东省师大附中高三第一次调研测试数学试卷(含解析)_第1页
2023学年山东省师大附中高三第一次调研测试数学试卷(含解析)_第2页
2023学年山东省师大附中高三第一次调研测试数学试卷(含解析)_第3页
2023学年山东省师大附中高三第一次调研测试数学试卷(含解析)_第4页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若则实数的取值范围是()A. B. C. D.2.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A. B.C. D.3.已知数列的通项公式是,则()A.0 B.55 C.66 D.784.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()A. B. C. D.5.某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为()A. B. C. D.6.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.7.复数满足(为虚数单位),则的值是()A. B. C. D.8.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.649.已知集合.为自然数集,则下列表示不正确的是()A. B. C. D.10.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.11.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.3612.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为______.14.已知函数,若函数有个不同的零点,则的取值范围是___________.15.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.16.已知向量满足,,则______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,,,(e是自然对数的底数).(1)求数列,的通项公式;(2)求数列的前n项和.18.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.19.(12分)已知函数.(Ⅰ)解不等式;(Ⅱ)设其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.20.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.21.(12分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.(1)若,求的值;(2)求的最大值.22.(10分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】

根据,得到有解,则,得,,得到,再根据,有,即,可化为,根据,则的解集包含求解,【题目详解】因为,所以有解,即有解,所以,得,,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【答案点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,2、D【答案解析】

先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【题目详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以,因为的递增区间是:,,由,,得:,,所以函数的单调递增区间为().故选:D.【答案点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.3、D【答案解析】

先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.【题目详解】解:由题意得,当为奇数时,,当为偶数时,所以当为奇数时,;当为偶数时,,所以故选:D【答案点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.4、C【答案解析】

设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【题目详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,,解得或或.综上,满足条件的点共有三个.故选:C.【答案点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.5、C【答案解析】

作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【题目详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【答案点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.6、C【答案解析】

由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【题目详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【答案点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.7、C【答案解析】

直接利用复数的除法的运算法则化简求解即可.【题目详解】由得:本题正确选项:【答案点睛】本题考查复数的除法的运算法则的应用,考查计算能力.8、B【答案解析】

设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【题目详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【答案点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。9、D【答案解析】

集合.为自然数集,由此能求出结果.【题目详解】解:集合.为自然数集,在A中,,正确;在B中,,正确;在C中,,正确;在D中,不是的子集,故D错误.故选:D.【答案点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.10、C【答案解析】

分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【题目详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【答案点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).11、B【答案解析】

方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.12、D【答案解析】

取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【题目详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【答案点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】

对函数求导,得出在处的一阶导数值,即得出所求切线的斜率,再运用直线的点斜式求出切线的方程.【题目详解】令,,所以,又,所求切线方程为,即.故答案为:.【答案点睛】本题考查运用函数的导函数求函数在切点处的切线方程,关键在于求出在切点处的导函数值就是切线的斜率,属于基础题.14、【答案解析】

作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,,,所以.15、164【答案解析】

只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【题目详解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;则a4=+2+=5+8+3=16.故答案为:16,4.【答案点睛】本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.16、1【答案解析】

首先根据向量的数量积的运算律求出,再根据计算可得;【题目详解】解:因为,所以又所以所以故答案为:【答案点睛】本题考查平面向量的数量积的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【答案解析】

(1)当时,,与作差可得,即可得到数列是首项为1,公差为1的等差数列,即可求解;对取自然对数,则,即是以1为首项,以2为公比的等比数列,即可求解;(2)由(1)可得,再利用错位相减法求解即可.【题目详解】解:(1)因为,,①当时,,解得;当时,有,②由①②得,,又,所以,即数列是首项为1,公差为1的等差数列,故,又因为,且,取自然对数得,所以,又因为,所以是以1为首项,以2为公比的等比数列,所以,即(2)由(1)知,,所以,③,④③减去④得:,所以【答案点睛】本题考查由与的关系求通项公式,考查错位相减法求数列的和.18、(1);(2).【答案解析】

(1)设出的坐标,代入,结合在抛物线上,求得两点的横坐标,进而求得点的坐标.(2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,结合,求得的表达式,结合二次函数的性质求得的取值范围.【题目详解】(1)可知,设则,又,所以解得所以.(2)据题意,直线的斜率必不为所以设将直线方程代入椭圆的方程中,整理得,设则①②因为所以且将①式平方除以②式得所以又解得又,所以令,则所以【答案点睛】本小题主要考查直线和抛物线的位置关系,考查直线和椭圆的位置关系,考查向量数量积的坐标运算,考查向量模的坐标运算,考查化归与转化的数学思想方法,考查运算求解能力,属于难题.19、(Ⅰ);(Ⅱ).【答案解析】

(I)零点分段法,分,,讨论即可;(II),分,,三种情况讨论.【题目详解】原不等式即.当时,化简得.解得;当时,化简得.此时无解;当时,化简得.解得.综上,原不等式的解集为由题意,设方程两根为.当时,方程等价于方程.易知当,方程在上有两个不相等的实数根.此时方程在上无解.满足条件.当时,方程等价于方程,此时方程在上显然没有两个不相等的实数根.当时,易知当,方程在上有且只有一个实数根.此时方程在上也有一个实数根.满足条件.综上,实数的取值范围为.【答案点睛】本题考查解绝对值不等式以及方程根的个数求参数范围,考查学生的运算能力,是一道中档题.20、(1);(2).【答案解析】

(1)过作的垂线,垂足为,易得,进一步可得;(2)利用导数求得最大值即可.【题目详解】(1)如图,过作的垂线,垂足为,在直角中,,,所以,同理,.(2)设,则,令,则,即.设,且,则当时,,所以单调递减;当时,,所以单调递增,所以当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论