



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为虚数单位,为复数,若为实数,则()A. B. C. D.2.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④3.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12 B.16 C.20 D.84.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④5.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立6.已知函数,,,,则,,的大小关系为()A. B. C. D.7.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.8.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.69.下列图形中,不是三棱柱展开图的是()A. B. C. D.10.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.11.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30 B. C. D.6212.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.14.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.15.已知,,求____________.16.设数列为等差数列,其前项和为,已知,,若对任意都有成立,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(mR)的导函数为.(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合.18.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.19.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.20.(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.21.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.22.(10分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,,,,,的大小关系.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解【题目详解】设,则.由题意有,所以.故选:B【答案点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题2、B【答案解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【题目详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【答案点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.3、A【答案解析】
先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【题目详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【答案点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.4、B【答案解析】
根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【题目详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【答案点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型5、A【答案解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【题目详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【答案点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.6、B【答案解析】
可判断函数在上单调递增,且,所以.【题目详解】在上单调递增,且,所以.故选:B【答案点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.7、A【答案解析】
由,可得以及,而,代入即可得到答案.【题目详解】设公差为d,则解得,所以.故选:A.【答案点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.8、C【答案解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【题目详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【答案点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.9、C【答案解析】
根据三棱柱的展开图的可能情况选出选项.【题目详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【答案点睛】本小题主要考查三棱柱展开图的判断,属于基础题.10、B【答案解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【题目详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【答案点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.11、B【答案解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【题目详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【答案点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.12、C【答案解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【题目详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【答案点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、0【答案解析】
利用等差中项以及等比数列的前项和公式即可求解.【题目详解】由,,是等差数列可知因为,所以,故答案为:0【答案点睛】本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.14、【答案解析】
由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.【题目详解】如图,连接,,,∵分别为棱的中点,∴,又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.故答案为:.【答案点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.15、【答案解析】
求出向量的坐标,然后利用向量数量积的坐标运算可计算出结果.【题目详解】,,,因此,.故答案为:.【答案点睛】本题考查平面向量数量积的坐标运算,考查计算能力,属于基础题.16、【答案解析】
由已知条件得出关于首项和公差的方程组,解出这两个量,计算出,利用二次函数的基本性质求出的最大值及其对应的值,即可得解.【题目详解】设等差数列的公差为,由,解得,.所以,当时,取得最大值,对任意都有成立,则为数列的最大值,因此,.故答案为:.【答案点睛】本题考查等差数列前项和最值的计算,一般利用二次函数的基本性质求解,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2){1,2}.【答案解析】
(1)求解导数,表示出,再利用的导数可求m的取值范围;(2)表示出,结合二次函数知识求出的最小值,再结合导数及基本不等式求出的最值,从而可求正整数k的取值集合.【题目详解】(1)因为,所以,所以,则,由题意可知,解得;(2)由(1)可知,,所以因为整理得,设,则,所以单调递增,又因为,所以存在,使得,设,是关于开口向上的二次函数,则,设,则,令,则,所以单调递增,因为,所以存在,使得,即,当时,,当时,,所以在上单调递减,在上单调递增,所以,因为,所以,又由题意可知,所以,解得,所以正整数k的取值集合为{1,2}.【答案点睛】本题主要考查导数的应用,利用导数研究极值问题一般转化为导数的零点问题,恒成立问题要逐步消去参数,转化为最值问题求解,适当构造函数是转化的关键,本题综合性较强,难度较大,侧重考查数学抽象和逻辑推理的核心素养.18、(1),;(2)米.【答案解析】
(1)过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.(2)根据(1)有,再设,求导分析函数的单调性与最值即可.【题目详解】解:过点作于点则,在中,,,由正弦定理得:,,,,,因为,化简得,令,,且,因为,故令即,记,当时,单调递增;当时,单调递减,又,当时,取最大值,此时,的最大值为米.【答案点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.19、(1);(2)见解析.【答案解析】
(1)利用独立事件的概率乘法公式可计算出所求事件的概率;(2)由题意可知随机变量的可能取值有、、,计算出随机变量在不同取值下的概率,由此可得出随机变量的分布列.【题目详解】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件,则;(2)由题意可知,随机变量的可能取值为、、.则,,.故的分布列为【答案点睛】本题考查概率的计算,同时也考查了随机变量分布列,考查计算能力,属于基础题.20、(1);(2)证明见解析.【答案解析】
(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【题目详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,,所以.(2)由为方程的两个实根,得,两式相减,可得,因此,令,由,得,则,构造函数.则,所以函数在上单调递增,故,即,可知,故,命题得证.【答案点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.21、(1);(2)或.【答案解析】
(1)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 低空经济浪潮推动航空产业创新与变革
- 云南省曲靖市沾益区大坡乡2024-2025学年初三下学期初联考化学试题含解析
- 上海市曹杨第二中学2024-2025学年高三下学期周末练习3语文试题含解析
- 2025浙江钱江生物化学股份有限公司招聘12人(嘉兴市)笔试参考题库附带答案详解
- 2025年芜湖官陡梦湖产业服务有限公司招聘5人笔试参考题库附带答案详解
- 2025山东枣庄市国企招聘实习生高薪急聘人数106人笔试参考题库附带答案详解
- 防封建迷信课件
- 2024年度天津市护师类之主管护师题库检测试卷A卷附答案
- 2025年内蒙古鄂尔多斯市天安公交集团招聘21人笔试参考题库附带答案详解
- 二手车评估师的职业前景试题及答案
- 楼梯踏步抹灰标准合同7篇
- 浅谈在小学五六年级开展性教育的必要性
- (完整版)二十四山年月日时吉凶定局详解,
- 降落伞拉直阶段轨迹及拉直力计算
- 天猫淘宝店铺运营每日巡店必做的事
- 支撑掩护式液压支架总体方案及底座设计
- 阀门螺栓使用对照表
- 光驱的读取偏移值度矫正数据
- 压力容器基础知识
- 教你写出漂亮字体——钢笔楷书字帖
- 2019年安徽省八年级学业水平考试地理试卷(含答案)
评论
0/150
提交评论