版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2332.用一个平面去截正方体,则截面不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形3.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且4.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤5.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.6.已知实数满足,则的最小值为()A. B. C. D.7.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e) B.C. D.(0,1)8.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24 B.36 C.48 D.649.设集合,,若,则的取值范围是()A. B. C. D.10.若集合,,则()A. B. C. D.11.记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为()A. B. C. D.12.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.11二、填空题:本题共4小题,每小题5分,共20分。13.已知正数a,b满足a+b=1,则的最小值等于__________,此时a=____________.14.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______.15.已知向量,,则______.16.已知,则满足的的取值范围为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,,,为的中点.(1)求证:平面;(2)求二面角的大小.18.(12分)已知函数.(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围.19.(12分)某市调硏机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:月收入(单位:百元)频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在的有15名,求,,的值,并完成频率分布直方图.(2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.20.(12分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.21.(12分)已知三棱柱中,,是的中点,,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.22.(10分)对于正整数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
计算得到Ac,bca【题目详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.【答案点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.2、C【答案解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.考点:平面的基本性质及推论.3、D【答案解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【题目详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【答案点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.4、B【答案解析】
依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果.【题目详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【答案点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.5、D【答案解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.6、A【答案解析】
所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.【题目详解】解:因为满足,则,当且仅当时取等号,故选:.【答案点睛】本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.7、D【答案解析】
原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【题目详解】由题意,a>2,令t,则f(x)=a⇔⇔⇔⇔.记g(t).当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.则⇔,记h(t)(t>2且t≠2),则h′(t).令φ(t),则φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.由,可得,即a<2.∴实数a的取值范围是(2,2).故选:D.【答案点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.8、B【答案解析】
根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【题目详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【答案点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.9、C【答案解析】
由得出,利用集合的包含关系可得出实数的取值范围.【题目详解】,且,,.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.10、B【答案解析】
根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【题目详解】依题意,;而,故,则.故选:B.【答案点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.11、C【答案解析】
据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案.【题目详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,,表示的平面区域即为图中的,,根据几何概率的计算公式可得,故选:C.【答案点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.12、D【答案解析】
由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【题目详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【答案点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、3【答案解析】
根据题意,分析可得,由基本不等式的性质可得最小值,进而分析基本不等式成立的条件可得a的值,即可得答案.【题目详解】根据题意,正数a、b满足,则,当且仅当时,等号成立,故的最小值为3,此时.故答案为:3;.【答案点睛】本题考查基本不等式及其应用,考查转化与化归能力,属于基础题.14、【答案解析】
由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程.【题目详解】设圆的半径为,由题意可得,所以,由题意设圆心,由题意可得,由直线与圆相切可得,所以,而,,所以,即,解得,所以的最大值为2,当且仅当时取等号,可得,所以圆心坐标为:,半径为,所以圆的标准方程为:.故答案为:.【答案点睛】本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.15、【答案解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【题目详解】由题意得,.,.,,.故答案为:.【答案点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.16、【答案解析】
将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【题目详解】根据题意,f(x)=x|x|=,则f(x)为奇函数且在R上为增函数,则f(2x﹣1)+f(x)≥0⇒f(2x﹣1)≥﹣f(x)⇒f(2x﹣1)≥f(﹣x)⇒2x﹣1≥﹣x,解可得x≥,即x的取值范围为[,+∞);故答案为:[,+∞).【答案点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇偶性与单调性.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【答案解析】
(1)连接,交与,连接,由,得出结论;(2)以为原点,,,分别为,,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.【题目详解】(1)连接,交与,连接,在中,,又平面,平面,所以平面;(2)由平面平面,,为平面与平面的交线,故平面,故,又,所以平面,以为原点,,,分别为,,轴建立空间直角坐标系,,,,,,,设平面的法向量为,,,由,得,平面的法向量为,由,故二面角的大小为.【答案点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)x=1(2)证明见解析(3)【答案解析】
(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证,即证,即证,构造函数进而求证;(3)不等式对一切正实数恒成立,,设,分类讨论进而求解.【题目详解】解:(1)令,所以,当时,,在上单调递增;当时,,在单调递减;所以,所以的零点为.(2)由题意,,要证,即证,即证,令,则,由(1)知,当且仅当时等号成立,所以,即,所以原不等式成立.(3)不等式对一切正实数恒成立,,设,,记,△,①当△时,即时,恒成立,故单调递增.于是当时,,又,故,当时,,又,故,又当时,,因此,当时,,②当△,即时,设的两个不等实根分别为,,又,于是,故当时,,从而在单调递减;当时,,此时,于是,即舍去,综上,的取值范围是.【答案点睛】(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题.19、(1),频率分布直方图见解析;(2)分布列见解析,;(3)来自的可能性最大.【答案解析】
(1)由频率和为可知,根据求得,从而计算得到频数,补全频率分布表后可画出频率分布直方图;(2)首先确定的所有可能取值,由超几何分布概率公式可计算求得每个取值对应的概率,由此得到分布列;根据数学期望的计算公式可求得期望;(3)根据中不赞成比例最大可知来自的可能性最大.【题目详解】(1)由频率分布表得:,即.收入在的有名,,,,则频率分布直方图如下:(2)收入在中赞成人数为,不赞成人数为,可能取值为,则;;,的分布列为:.(3)来自的可能性更大.【答案点睛】本题考查概率与统计部分知识的综合应用,涉及到频数、频率的计算、频率分布直方图的绘制、服从于超几何分布的随机变量的分布列与数学期望的求解、统计估计等知识;考查学生的运算和求解能力.20、(1)证明见解析;(2)证明见解析.【答案解析】
(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.【题目详解】(1),令,则,令得,当时,则在单调递减,当时,则在单调递增,所以,当时,,即,则在上单调递增,当时,,易知当时,,当时,,由零点存在性定理知,,不妨设,使得,当时,,即,当时,,即,当时,,即,所以在和上单调递增,在单调递减;(2)证明:构造函数,,,,整理得,,(当时等号成立),所以在上单调递增,则,所以在上单调递增,,这里不妨设,欲证,即证由(1)知时,在上单调递增,则需证,由已知有,只需证,即证,由在上单调递增,且时,有,故成立,从而得证.【答案点睛】本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.21、(1)证明见解析(2)【答案解析】
(1)取的中点,连接,,证明平面得出,再得出;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 负面情绪处理课程设计
- 2024年幼儿健康管理知识培训题库(含答案)
- 二零二五版四荒地承包经营权投资融资合同3篇
- 年度多用客房车市场分析及竞争策略分析报告
- 年度垃圾收转装备战略市场规划报告
- 2024版远程教育平台搭建合同3篇
- 二零二五年度门店租赁合同范本:环保节能标准版4篇
- 室外电气工程施工方案
- 送水泵房的课程设计
- 2025年度个人电子设备买卖合同模板2篇
- 骨科手术后患者营养情况及营养不良的原因分析,骨伤科论文
- GB/T 24474.1-2020乘运质量测量第1部分:电梯
- GB/T 12684-2006工业硼化物分析方法
- 定岗定编定员实施方案(一)
- 高血压患者用药的注意事项讲义课件
- 特种作业安全监护人员培训课件
- (完整)第15章-合成生物学ppt
- 太平洋战争课件
- 封条模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖浆
- 货代操作流程及规范
评论
0/150
提交评论