版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.二次函数y=ax2+bx+c的部分对应值如下表x﹣3﹣2﹣1012y﹣12﹣50343利用二次函数的图象可知,当函数值y>0时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>32.下列命题中,真命题是()A.所有的平行四边形都相似 B.所有的矩形都相似 C.所有的菱形都相似 D.所有的正方形都相似3.反比例函数的图象位于()A.第一、三象限 B.第二、四象限 C.第二、三象限 D.第一、二象限4.在同一坐标系中,一次函数与二次函数的大致图像可能是A. B. C. D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.π C.π﹣3 D.+π6.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为()A.7 B.14 C.6 D.157.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣68.如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10 B.4 C.15 D.99.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.3210.方程3x2-4x-1=0的二次项系数和一次项系数分别为()A.3和4 B.3和-4 C.3和-1 D.3和1二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.12.如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.13.如图,在Rt△ABC中,,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.14.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.15.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____.16.函数沿直线翻折所得函数解析式为_____________.17.若二次函数的图象开口向下,则实数a的值可能是___________(写出一个即可)18.已知:,且y≠4,那么=______.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB∶BD=.(1)求tan∠DAC的值.(2)若BD=4,求S△ABC.20.(6分)如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠BAO=30°,AB=BO,反比例函数y=(x<0)的图象经过点A(1)求∠AOB的度数(2)若OA=,求点A的坐标(3)若S△ABO=,求反比例函数的解析式21.(6分)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?22.(8分)综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.23.(8分)某商场购进了一批名牌衬衫,平均每天可售出件,每件盈利元为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这种衬衫的售价每降低元,那么该商场平均每天可多售出件.(1)若该商场计划平均每天盈利元,则每件衬衫应降价多少元?(2)该商场平均每天盈利能否达到元?24.(8分)如图,点分别在的边上,已知.(1)求证:.(2)若,求的长.25.(10分)如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.
(1)求点的坐标;(2)当点在上时.①求证:;②如图2,在上取一点,使,连结.求证:;(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.26.(10分)如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.(1)求抛物线的解析式及顶点D的坐标;(2)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求F点坐标;(3)直线DE上是否存在点P到直线AD的距离与到x轴的距离相等?若存在,请求出点P,若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】函数值y=1对应的自变量值是:-1、3,在它们之间的函数值都是正数.由此可得y>1时,x的取值范围.【详解】从表格可以看出,二次函数的对称轴为直线x=1,故当x=﹣1或3时,y=1;因此当﹣1<x<3时,y>1.故选C.【点睛】本题主要考查了二次函数与x轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题.2、D【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】所有正方形都相似,故D符合题意;故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、B【解析】根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限,k<0,位于二、四象限.【详解】解:∵反比例函数的比例系数-6<0,∴函数图象过二、四象限.故选:B.【点睛】本题考查的知识点是反比例函数的图象及其性质,熟记比例系数与图象位置的关系是解此题的关键.4、D【分析】对于每个选项,先根据二次函数的图象确定a和b的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在.【详解】A、由二次函数y=ax2+bx的图象得a>0,b>0,则一次函数y=ax+b经过第一、二、三象限,所以A选项错误;B、由二次函数y=ax2+bx的图象得a>0,b<0,则一次函数y=ax+b经过第一、三、四象限,所以B选项错误;C、由二次函数y=ax2+bx的图象得a<0,b<0,则一次函数y=ax+b经过第一、二、四象限,所以C选项错误;D、由二次函数y=ax2+bx的图象得a<0,b>0,则一次函数y=ax+b经过第二、三、四象限,所以D选项正确.故选:A.【点睛】本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象.也考查了二次函数图象与系数的关系.5、B【解析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积=,故选B.【点睛】考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.6、B【分析】根据“PA⊥PB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQ⊥x轴于点Q,确定OP的最大值即可.【详解】∵PA⊥PB∴∠APB=90°∵点A与点B关于原点O对称,∴AO=BO∴AB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交○M于点,当点P位于位置时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5∵∴当点P在的延长线于○M的交点上时,OP取最大值,∴OP的最大值为3+2×2=7∴AB的最大值为7×2=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.7、D【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解:0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.故选D.8、B【解析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:∵DE∥BC,∴AEEC=ADDB解得,EC=4,故选:B.【点睛】考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.10、B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.二、填空题(每小题3分,共24分)11、【解析】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.12、1【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【详解】解:连接AD、OD,
∵AB为直径,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴
∴∠ABD=70°,
∴∠AOD=1°
∴的度数1°;
故答案为1.【点睛】此题考查了圆周角定理以及等腰三角形的性质,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13、9【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD∽△BAC,∴,∴,∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.14、1【解析】试题分析:根据折线统计图可知6名学生的体育成绩为;24,24,1,1,1,30,所以这组数据的中位数是1.考点:折线统计图、中位数.15、【分析】先利用点A求出直线l的解析式,然后求出以B为圆心,半径为1的圆与直线l相切时点B的坐标,即b的值,从而确定以B为圆心,半径为1的圆与直线l有交点时b的取值范围.【详解】设直线l的解析式为∵动点A(m+2,3m+4)在直线l上,将点A代入直线解析式中得解得∴直线l解析式为y=3x﹣2如图,直线l与x轴交于点C(,0),交y轴于点A(0,﹣2)∴OA=2,OC=∴AC=若以B为圆心,半径为1的圆与直线l相切于点D,连接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴∴以B为圆心,半径为1的圆与直线l相切时,B点坐标为或∴以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是故答案为【点睛】本题主要考查直线与圆的位置关系,掌握锐角三角函数是解题的关键.16、【解析】函数沿直线翻折所得函数图像开口向下,只要根据轴对称的性质求出对称后的顶点坐标即可.【详解】∵=(x-1)2+3,∴其顶点坐标是(1,3),∵(1,3)关于直线的点的坐标是(1,-1),∴所得函数解析式为(x-1)2-1.故答案为:.【点睛】本题考查了二次函数的轴对称变换,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.17、-2(答案不唯一,只要是负数即可)【分析】根据二次函数的图像和性质进行解答即可【详解】解:∵二次函数的图象开口向下,∴a<0∴取a=-2故答案为:-2(答案不唯一,只要是负数即可)【点睛】本题考查了二次函数的图像和性质,熟练掌握相关知识是解题的关键,题目较简单18、【分析】由分式的性质和等比性质,即可得到答案.【详解】解:∵,∴,由等比性质,得:;故答案为:.【点睛】本题考查了比例的性质,以及分式的性质,解题的关键是熟练掌握等比性质.三、解答题(共66分)19、(1);(2).【分析】(1)过D点作DE⊥AB于点E,根据相似三角形的判定易证△BDE∽△BAC,可得,再根据角平分线的性质可得DE=CD,利用等量代换即可得到tan∠DAC的值;(2)先利用特殊角的三角形函数得到∠CAD=30°,进而得到∠B=30°,根据直角三角形中30°角所对直角边为斜边的一半得到DE的长,进而得到CD与AC的长,再利用三角形的面积公式求解即可.【详解】解:(1)如图,过D点作DE⊥AB于点E,在△BDE与△BAC中,∠BED=∠C=90°,∠B=∠B,∴△BDE∽△BAC,∴,∵AD是∠BAC的平分线,∴DE=CD,∴,∴tan∠DAC;(2)∵tan∠DAC,∴∠DAC=30°,∴∠BAC=2∠DAC=60°,∴∠B=90°﹣∠BAC=30°,∴DE=BD=2,∴CD=DE=2,∴BC=BD+CD=6,∵,∴,∴S△ABC=.【点睛】本题主要考查锐角三角函数,角平分线的性质,相似三角形的判定与性质,解此题的关键在于熟练掌握根据角平分线的性质作出辅助线.20、(1)30°;(2)A(﹣6,);(3)【分析】(1)由题意直接根据等腰三角形的性质进行分析即可;(2)由题意过点A作AC⊥x轴于点C,由∠AOB=30°,解直角三角形可得出AC=2,再由锐角三角函数或勾股定理得出OC=6,即可求得A点的坐标;(3)根据题意设OB=AB=m,根据BA=BO可得出∠ABC=60°,由此可得出AC=m,由S△ABO=,列出关于m的方程,解方程求得m的值,进而AC和OC,结合反比例函数系数k的几何意义求得解析式.【详解】解(1)∵AB=BO,∠BAO=30°,∴∠AOB=∠BAO=30°.(2)过点A作AC⊥x轴,∵∴,∴A(﹣6,).(3)设OB=AB=,得出∠ABC=60°,在直角三角形ACB中得出AC=,∵S△ABO=,∴,∴,∴AC==,∴A(﹣3,).把A点坐标代入得反比例函数的解析式为.【点睛】本题考查反比例函数系数k的几何意义、特殊角的三角函数值,解题的关键是根据特殊角的三角函数值找出线段的长度.21、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式.
(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长.把△PAB分成△PAF与△PBF求面积和,即得到△PAB面积与t的函数关系,配方即得到t为何值时,△PAB面积最大,进而求得此时点P坐标.【详解】解:(1)抛物线过点,,解这个方程组,得,抛物线解析式为.(2)如图1,过点作轴于点,交于点.时,,.直线解析式为.点在线段上方抛物线上,设...=点运动到坐标为,面积最大.【点睛】本题考查了二次函数的图象与性质,利用二次函数求三角形面积的最大值,关键在于把原三角形分割成有一边平行于y轴的两个三角形面积之和.22、(1);(2)3;(3).【分析】(1)利用待定系数法进行求解即可;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,先求出S△OAC=6,再根据S△BCD=S△AOC,得到S△BCD=,然后求出BC的解析式为,则可得点G的坐标为,由此可得,再根据S△BCD=S△CDG+S△BDG=,可得关于m的方程,解方程即可求得答案;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,由点D的坐标可得点N点纵坐标为±,然后分点N的纵坐标为和点N的纵坐标为两种情况分别求解;以BD为对角线时,有1种情况,此时N1点与N2点重合,根据平行四边形的对边平行且相等可求得BM1=N1D=4,继而求得OM1=8,由此即可求得答案.【详解】(1)抛物线经过点A(-2,0),B(4,0),∴,解得,∴抛物线的函数表达式为;(2)作直线DE⊥轴于点E,交BC于点G,作CF⊥DE,垂足为F,∵点A的坐标为(-2,0),∴OA=2,由,得,∴点C的坐标为(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,设直线BC的函数表达式为,由B,C两点的坐标得,解得,∴直线BC的函数表达式为,∴点G的坐标为,∴,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为,∴点N点纵坐标为±,当点N的纵坐标为时,如点N2,此时,解得:(舍),∴,∴;当点N的纵坐标为时,如点N3,N4,此时,解得:∴,,∴,;以BD为对角线时,有1种情况,此时N1点与N2点重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),综上,点M的坐标为:.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.23、(1)每件衬衫应降价元;(2)商场平均每天盈利不能达到元.【分析】(1)设每件衬衫应降价元,根据售价每降低元,那么该商场平均每天可多售出件,利用利润=单件利润×数量列方程求出x的值即可;(2)假设每件衬衫应降价元,利润能达到2500元,根据题意可得关于x的一元二次方程,根据一元二次方程的判别式即可得答案.【详解】(1)设每件衬衫应降价元,则每件盈利元,每天可以售出件由题意得,即解得,∵要尽快减少库存,∴=,答:若该商场计划平均每天盈利元,每件衬衫应降价元.(2)假设每件衬衫应降价元,利润能达到2500元,∴,整理得:,∵,∴方程无解,∴商场平均每天盈利不能达到元.【点睛】本题考查一元二次方程的应用,正确得出降价和销售量的关系,然后以利润为等量关系列方程是解题关键.24、(1)证明见解析(2)【分析】(1)根据三角形内角和定理以及相似三角形的判定定理即可求出答案;(2)根据相似三角形的性质即可求出答案.【详解】解:(1)证明:在中,,∴.又∵在中,,∴,∴(2)∵,∴,∴,∵∴∴【点睛】本题考查了三角形内角和定理及相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质与判定.25、(1)(0,4);(2)①详见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车制造中的模具设计与制造考核试卷
- 培训员工如何应对危险化学品的生产课程考核试卷
- 木材采运的社会责任与道德规范考核试卷
- 抗凝药物观察与护理
- 截瘫患者平衡分级护理
- 水族馆5G网络覆盖策略-洞察分析
- 核电站用过滤毡项目综合评估报告
- 新零售背景下的食品安全风险-洞察分析
- 异常处理算法优化-洞察分析
- 血管破裂护理常规课件
- 门卫值班巡查记录表(20份)
- 乒乓球比赛用表
- 客运驾驶员从业行为定期考核制度
- 实施“情智新课堂”的思考
- 砖基础工程量计算PPT课件
- 小学生青春期心理健康教育课件.ppt
- 电动汽车国标充电报文解析及应用
- (改后)柳州火车站设施优化改善报告
- 麻醉科学科建设及人才梯队培养计划
- 紫苏正容贴膏临床研究总结
- 一年级上册生字表
评论
0/150
提交评论