2023届广西钦州市数学九上期末复习检测模拟试题含解析_第1页
2023届广西钦州市数学九上期末复习检测模拟试题含解析_第2页
2023届广西钦州市数学九上期末复习检测模拟试题含解析_第3页
2023届广西钦州市数学九上期末复习检测模拟试题含解析_第4页
2023届广西钦州市数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.2.下列成语所描述的事件是必然事件的是()A.守株待兔 B.瓮中捉鳖 C.拔苗助长 D.水中捞月3.如图,是的直径,且,是上一点,将弧沿直线翻折,若翻折后的圆弧恰好经过点,取,,,那么由线段、和弧所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.24.下列运算正确的是()A.x6÷x3=x2 B.(x3)2=x5 C. D.5.若点在反比例函数的图象上,且,则下列各式正确的是()A. B. C. D.6.不等式的解为()A. B. C. D.7.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②点F是GE的中点;③;④,其中正确的结论个数是()A.4个 B.3个 C.2个 D.1个8.比较cos10°、cos20°、cos30°、cos40°大小,其中值最大的是()A.cos10° B.cos20° C.cos30° D.cos40°9.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形 B.矩形 C.线段 D.梯形10.在下列四个汽车标志图案中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.12.若a,b是一元二次方程的两根,则________.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm1.14.如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.15.某同学用描点法y=ax2+bx+c的图象时,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的y值是_______.16.已知,则=__________.17.从一批节能灯中随机抽取40只进行检查,发现次品2只,则在这批节能灯中随机抽取一只是次品的概率为_______.18.若、是方程的两个实数根,代数式的值是______.三、解答题(共66分)19.(10分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,求∠BCD的度数.20.(6分)已知:在△ABC中,AB=AC,AD⊥BC于点D,分别过点A和点C作BC、AD边的平行线交于点E.(1)求证:四边形ADCE是矩形;(2)连结BE,若,AD=,求BE的长.21.(6分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了_______名学生;(2)请将两个统计图补充完整;(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.22.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣2).(1)△ABC关于原点O对称的图形是△A1B1C1,不用画图,请直接写出△A1B1C1的顶点坐标:A1,B1,C1;(2)在图中画出△ABC关于原点O逆时针旋转90°后的图形△A2B2C2,请直接写出△A2B2C2的顶点坐标:A2,B2,C2.23.(8分)如图是测量河宽的示意图,与相交于点,,测得,,,求得河宽.24.(8分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据,,)25.(10分)如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC中点C坐标为(0,1).(1)把△ABC绕点C顺时针旋转90°后得到△A1B1C1,画出△A1B1C1,并写出A1坐标.(2)把△ABC以O为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A2B2C2,并写出A2坐标.26.(10分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.

参考答案一、选择题(每小题3分,共30分)1、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【详解】如图,当在对角线CA上时,C最小,连接CP,

由旋转得:BP=B,∠PB=90°,

∴∠PBC+∠CB=90°,

∵四边形ABCD为正方形,

∴BC=BA,∠ABC=90°,

∴∠AB+∠CB=90°,

∴∠PBC=∠AB,在△PBC和△BA中,,

∴△PBC≌△BA,

∴A=PC=1,

在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【点睛】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.2、B【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件依次判定即可得出答案.【详解】解:A选项为随机事件,故不符合题意;

B选项是必然事件,故符合题意;

C选项为不可能事件,故不符合题意;

D选项为不可能事件,故不符合题意;

故选:B.【点睛】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.3、C【分析】作OE⊥AC交⊙O于F,交AC于E,连接CO,根据折叠的性质得到OE=OF,根据直角三角形的性质求出∠CAB,再得到∠COB,再分别求出S△ACO与S扇形BCO即可求解..【详解】作OE⊥AC交⊙O于F,交AC于E,由折叠的性质可知,EF=OE=OF,∴OE=OA,在Rt△AOE中,OE=OA,∴∠CAB=30°,连接CO,故∠BOC=60°∵∴r=2,OE=1,AC=2AE=2×=2∴线段、和弧所围成的曲边三角形的面积为S△ACO+S扇形BCO===≈3.8故选C.【点睛】本题考查的是翻折变换的性质、圆周角定理,扇形的面积求解,解题的关键是熟知折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4、D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A.x6÷x3=x3,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;C.,故本选项不合题意;D.,正确,故本选项符合题意.故选:D.【点睛】本题主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键.5、C【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可.【详解】解:反比例函数为,函数图象在第二、四象限,在每个象限内,随着的增大而增大,又,,,.故选C.【点睛】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.6、B【分析】根据一元一次不等式的解法进行求解即可.【详解】解:移项得,,合并得,,系数化为1得,.故选:B.【点睛】本题考查一元一次不等式的解法,属于基础题型,明确解法是关键.7、C【分析】易得AG∥BC,进而可得△AFG∽△CFB,然后根据相似三角形的性质以及BA=BC即可判断①;根据余角的性质可得∠ABG=∠BCD,然后利用“角边角”可证明△ABG≌△BCD,可得AG=BD,于是有AG=BC,由①根据相似三角形的性质可得,进而可得FG=FB,然后根据FE≠BE即可判断②;根据相似三角形的性质可得,再根据等腰直角三角形的性质可得AC=AB,然后整理即可判断③;过点F作FM⊥AB于M,如图,根据相似三角形的性质和三角形的面积整理即可判断④.【详解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵点D是AB的中点,∴BD=AB,∴AG=BC,∵△AFG∽△CFB,∴,∴FG=FB,∵FE≠BE,∴点F是GE的中点不成立,故②错误;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴,故③正确;过点F作FM⊥AB于M,如图,则FM∥CB,∴△AFM∽△ACB,∴,∵,∴,故④错误.综上所述,正确的结论有①③共2个.故选:C.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质和等腰直角三角形的性质等知识,属于常考题型,熟练掌握全等三角形和相似三角形的判定和性质是解题的关键.8、A【解析】根据同名三角函数大小的比较方法比较即可.【详解】∵,∴.故选:A.【点睛】本题考查了同名三角函数大小的比较方法,熟记锐角的正弦、正切值随角度的增大而增大;锐角的余弦、余切值随角度的增大而减小.9、D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.10、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,符合此定义的只有选项B.故选B.二、填空题(每小题3分,共24分)11、【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:.故答案为:.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为:.12、【分析】将通分变形为,然后利用根与系数的关系即可求解.【详解】∵a、b是一元二次方程的两根∴,∴故答案为:.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握,是解题的关键.13、35π.【解析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm1.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、.【分析】过点F作FH⊥AB于点H,证四边形AGFH是正方形,设AG=x,表示出CG,再证△CFG∽△CBA,根据相似比求出x即可.【详解】如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan∠C=,∴AC==,则CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案为:.【点睛】本题是对几何知识的综合考查,熟练掌握三角函数及相似知识是解决本题的关键.15、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,,函数解析式为y=﹣3x2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.16、【分析】根据比例的性质,化简求值即可.【详解】故答案为:.【点睛】本题主要考察比例的性质,解题关键是根据比例的性质化简求值.17、【分析】利用概率公式求解可得.【详解】解:在这批节能灯中随机抽取一只是次品的概率为=,故答案为:.【点睛】本题考查概率公式,熟练掌握计算法则是解题关键.18、1【分析】先对所求代数式进行变形为,然后将代入方程中求出的值,根据根与系数的关系求出的值,最后代入即可求解.【详解】∵是方程的根∴∴∵、是方程的两个实数根∴原式=故答案为:1.【点睛】本题主要考查一元二次方程的根,根与系数的关系,掌握根与系数的关系,能够对所求代数式进行适当变形是解题的关键.三、解答题(共66分)19、136°【解析】试题分析:由∠BOD=88°,根据“圆周角定理”可得∠BAD的度数;由四边形ABCD是⊙O的内接四边形,可得∠BAD+∠BCD=180°,由此即可解得∠BCD的度数.试题解析:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°.20、(1)见解析;(2)【分析】(1)先根据已知条件证四边形ADCE是平行四边形,再加上∠ADC=90°,证平行四边形ADCE是矩形;(2)根据,得到BD与AB的关系,通过解直角三角形,求AD长,则可求EC的值,在Rt△BDE中,利用勾股定理得BE.【详解】(1)证明:∵AE//BC,CE//AD∴四边形ADCE是平行四边形∵AD⊥BC,AB=AC∴∠ADC=90°,∴平行四边形ADCE是矩形(2)解:连接DE,如图:在Rt△ABD中,∠ADB=90°∵∴∴设BD=x,AB=2x∴AD=∵AD=∴x=2∴BD=2∵AB=AC,AD⊥BC∴BC=2BD=4∵矩形ADCE中,EC=AD=,BC=4∴在Rt△BDE中,利用勾股定理得BE===【点睛】本题考查了平行四边形、矩形的判定与性质、矩形的判定、勾股定理、等腰三角形性质的应用,熟练掌握相关性质和定理是解决问题的关键.21、(1)200;(2)答案见解析;(3)240人.【分析】(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由10÷5%即可求得总人数为200人;(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;②由80÷200×100%可得喜欢A项运动的人所占的百分比;由30÷200×100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;(3)由1200×20%可得全校喜欢“排球”运动的人数.【详解】解:(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,∴这次抽查的总人数为:10÷5%=200(人);(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,∴喜欢A项运动的人数为:200-10-40-30-40=80,②喜欢A项运动的人所占的百分比为:80÷200×100%=40%;喜欢D项运动的人所占的百分比为:30÷200×100%=15%;根据上述所得数据补充完两幅图形如下:(3)从抽样调查中可知,喜欢排球的人约占20%,可以估计全校学生中喜欢排球的学生约占20%,人数约为:1200×20%=240(人).答:全校学生中,喜欢排球的人数约为240人.22、(1)(2,4),(0,4),(﹣1,2);(2)作图见解析;(4,﹣2),(4,0),(2,1).【分析】(1)根据中心对称图形的概念求解可得;(2)利用旋转变换的定义和性质作出对应点,再首尾顺次连接即可得.【详解】(1)△A1B1C1的顶点坐标:A1(2,4),B1(0,4),C1(﹣1,2),故答案为:(2,4),(0,4),(﹣1,2).(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(4,0),C2(2,1),故答案为:(4,﹣2),(4,0),(2,1).【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论