版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
框架柱截面设 第七 楼梯结构设 楼梯板计 平台板计 平台梁计 第八 现浇楼盖设 现浇楼盖设 第九 基础设 荷载计 确定基础底面 基础结构设计(混凝土采用 第十章科技资料翻 参考资 前言的电脑输入,并得到老师的和指正,使我的完成了任务,在在进行内力组合的计算时,进一步了解了Excel。在绘图时熟练掌握了AutoCAD,以上所有这些从不同方面达到了毕业设计的目的与要求。内容本设计主要进行了结构方案中横向框架3框架的抗震设计。点位移法求出自震周期进而按底部剪力法计算水平荷载作用下不利的一组或几组内力组合。选取最安全的结果计算配筋并绘图。:框 结构设 抗震设Thepurposeofthedesignistodotheanti-seismicdesigninthelongitudinalframesofaxis3.Whenthedirectionsoftheframesisdetermined,lytheweightofeachflooriscalculated.Thenthevibratecycleiscalculatedbyutilizingthepeak-displacementmethod,thenmakingtheamountofthehorizontalseismicforcecanbegotbywayofthebottom-shearforcemethod.Theseismicforcecanbeassignedaccordingtotheshearingstiffnessoftheframesofthedifferentaxis.Thentheinternalforce(bendingmoment,shearingforceandaxialforce)inthestructureunderthehorizontalloadscanbeeasilycalculated.Afterthedeterminationoftheinternalforceunderthedeadandliveloads,thecombinationofinternalforcecanbemadebyusingtheExcelsoftware,whosepurposeistofindoneorseveralsetsofthemostadverseinternalforceofthewalllimbsandthecoterminousgirders,whichwillbethebasisofprotractingthereinforcingdrawingsofthecomponents.Thedesignofthestairsisalsobeapproachedbycalculatingtheinternalforceandreinforcingsuchcomponentsaslandingslab,stepboardandlandinggirderwhoseshopdrawingsarecompletedin.Keywords:frames,structuraldesign,anti-seismic第一 工程概工程总体概况江苏溧阳职业学校一号楼为三层钢筋混凝土框架结构体系,建筑面积约3000m23.6m,室内外高差为0.45m,屋面为上人屋面,采用有组织排水。楼盖及屋盖用现浇钢筋混凝土板。建筑设计使用年限50年。设计资料内外墙作法:内外墙均选用粉煤灰轻渣空心砌块承载力特征123452、常年水位在地表下2.0m。建筑等级:结构安全等级二级,耐火等材料:混凝土强度等级上部结构采用C25C20;梁柱及基础纵向受力钢筋采用HRB335级钢筋,其余钢筋均采用HPB235级钢筋,钢筋最大直径不超过25mm。教学楼楼面活载,查《建筑结构荷载规范》(GB50009–2001),确定楼面活载标准值为2kN/m2;上人屋面活荷载标准值2.0kN/m2承重方案选择竖向荷载的传力途径:楼板的均布活载和恒载经次梁间接或直接传至主梁,再由主梁传至框架柱,最后传至地基。根据以上楼盖的平面布置及竖向荷载的传力途径,本教学楼框架的承重方案为横向框架承重方案。结构布置 64007 640071靡贷
1
7 J_JJ_JJJlJJ
_j尸
J-4-上— {8876' 8876
t
t"'"'j=框架梁截面尺寸1h=(1/12~1/8)l,b=(横向:ABCD跨:l=7500mmh=625~937.5mm,取h=700mm,b=300mm。BC跨 l=3000mm。h=250~375mm,取h=400mm,b=300mm纵向:l=8100mm。h=675~1012.5mm,取h=700mmb=300mm(3)h=500 b=250框架柱截面尺寸本工程为现浇钢筋混凝土结构,7度设防,高度<30m,抗震等级为二级,取底层柱估算柱尺寸,根据经验荷载为14kN/m2:中柱负荷面积(3/2+7.5/2)×8.1=42.525m2竖向荷载产生的轴力估计值:NV=14×42.525×3=1786.05kN N轴力增大系数,中柱1.1,边柱1.2,N=1.1×1786.05=1964.66kN。A≥N/uf=1964.66×103/(0.8×11.9)=206371.32mm N为安全起见,取柱截面尺寸为500mm×500mm框架结构计算简图第三 荷载代表荷载统计一、屋面(上人)(苏J01- 25厚1:2.5水泥砂浆保护层,表面抹光压平: 层(SBS改性沥青柔性卷: 高分子卷材(一层 0.0520厚1:3水泥砂浆找平层 120厚钢筋混凝土屋面板 20厚天棚石灰砂浆抹灰 合计 上人屋面均布活荷载 合计 2.0二、楼面(J01-200520厚1:3水泥砂浆找平 120厚现浇钢筋混凝土 20厚天棚石灰砂浆抹灰: 楼面均布活荷载 走廊 三、内(苏J01-20059/5)5厚1:0.3:3水泥石灰膏砂浆粉 12厚1:1:6水泥石灰膏砂浆打抵 粉煤灰轻渣空心砌 合计 四、外(苏J01-200522/6)20厚1:3水泥砂浆找平 12厚1:3水泥砂浆打底扫毛 表3- 2-3层墙m重m2表3- 底层墙m重m五、主梁荷载纵轴梁:横轴梁:AB,CD跨自重0.7×2×(0.7-BC跨自重 0.3×0.4×25=3kN/m粉 2×(0.4-次梁荷载
0.5×2×(0.5-六、柱荷载2-3 底 七、梁自重纵梁自 横向AB,CD 5.25×7.5×2×7=551.25kN 3×3×7=63kN八、柱自重2-3层每层柱重底 九、活荷载统计上人屋面活荷载标准 2.0楼面,卫生间活荷载标准 2.0走廊楼 2.5屋面雪荷 Sk=us0 荷载作用计算一、屋面荷载屋面恒荷载 梁自重AB,CD跨:BC跨:作用在顶层框架梁上的线荷载标准值为;梁自重g5 板传来的荷载g5AB2=g5CD2g5BC2活载作用在顶层框架梁上的线活载标准值为;g5AB=g5CD=2×8.1=16.2kN/m二、楼面荷载楼面荷载标准值:4.01kN/m2边跨(AB,CD)框架自重:5.64kN/m中跨( 梁自重gAB1=1=5.6kN/m板传来荷载gAB2=2 gAB==2×8.1=16.2kN/m三、屋面框架节点集中荷载标准值;恒载边跨连系梁自重 0.7×0.3×8.1×25=42.53kN粉刷 2×(0.7-0.12)×0.02×8.1×17=3.19kN连系梁传来屋面自重0.5×8.1×0.5×8.1×5.93=97.27kN顶层边节点集中荷 中柱连系梁自重 0.7×0.3×8.1×25=42.53kN粉刷 2×(0.7-0.1)×0.02×8.1×17=3.19kN连系梁传来屋面板自重 0.5×8.1×0.5×8.1×5.93=97.27kN0.5×(8.1+8.1-顶层点荷 活载Q5A=Q5D=0.5×8.1×0.5×8.1×2=32.81Q5B=Q5C=32.81+0.5×(8.1+8.1-四、楼面框架节点集中荷载标准值恒载边梁连系梁自 粉 2×(0.7-连系梁传来楼面荷载纵向梁上填充 柱自 中间层边节点集中荷 底层中柱连系梁自 粉 2×(0.7-连系梁传来楼面自 0.5×(8.1+8.1-内纵向梁上填充 柱自 中间层点集中荷 底层活载Q5B=Q5C=32.81+0.5×(8.1+8.1-3-1恒载作用下计算简图3-2活载作用下计算简图作用下荷载计算建筑物总重力荷载代表值Gia集中于屋盖处的质点重力荷载代表值G50%雪载:0.5×0.5×18×54.44=屋面恒载:5.93×18×54.44=横梁:(5.64×7.5×2+3.19×3)×7=纵梁:柱重:0.5×32×22.5=墙自身重(各层一半Gb集中于楼面处的质点重力荷载代表值G50%楼面活荷载:0.5×(2×7.5×54.44×2+2.5×3×54.44)=楼面恒载:3929.48梁自重:墙自重(上下各半层柱重(上下各半层 G2-c集中于底层楼面处的质点重力荷载代表值G50%楼面活荷载:0.5×(2×7.5×54.44×2+2.5×3×54.44)=楼面恒载 4.01×18×54.44=梁自重 墙自重(上下各半层 柱重(上下各半层 G结构等效总重力荷载:Geq0.85GL0.8524984.973-4各质点的重力荷载代表值作用计算:框架柱的抗侧移刚度在计算梁、柱线刚度时,应考虑楼盖对框架梁的影响,在现浇楼盖中,中框架梁的抗弯惯性矩取I2I0;边框架梁取I1.5I0;在装配整体式楼盖框架梁的抗弯惯性矩取I=1.5I0;边框架梁取I=1.2I0,I0为框架梁按矩形截面计算的截面惯性矩。3-4横梁、柱线刚度ILiEcLBH梁1梁梁梁每层框架柱总的抗侧移刚度见表3-表3- 框架柱横向侧移刚度DKic2iz(一般Kiciz(底层cK/(2K)(一般层c(0.5K)/(2K)(底层Di(12/c(kN/层4444底层 ∑D=二~三层:∑D=4×(14.87+18.89)+(17.68+21.7)×10=框架自振周期的计算表3- 框架顶点假想水平位移Δ计算层3210:(结构非承重砖墙影响的折减系数,对于框架取u则自振周期为 T1 1.70.6 u作用计算根据本工程设防烈度7、Ⅱ类场地土,设计分组为第一组,查《抗震规范》特征周期Tg=0.35sec,αmax=0.08Tg=2max10.08 结构等效总重力荷载: 0.85G0.8524984.97 所以无需在此结构顶部附加集中水平作用FEk1Geq0.0821237.22各楼层的作用和剪力标准值由表3-7计算列出表3- 楼层作用和剪力标准值计算层321多遇水平作用下位移验水平作用下框架结构的层间位移(△u)i和顶点位移ui分别按下列公式计算:(△u)i=Vi/∑D (3-u (3-各层的层间弹性位移角θe=(△u)i/hi,根据《建筑抗震设计规范》,考虑砖填充墙抗侧力作用的框架,层间弹性位移角限值[θe]<1/550。计算过程如表示表3-8横向水平作用下的位移验hiVi[e三二—第四 框架内力计恒载作用下的框架内力弯矩分配系数计算弯矩分配系数节点 右
1.332
下 0.843节点 左
0.4761.3320.843右
0.2221.3320.621 0.302右 1.3320.843
0.4411.3320.843
上
0.2791.3320.843
左 1.3320.6210.843
0.1861.3320.6210.843
0.2681.3320.8960.843
20.3731.3320.843上下
1.3320.843 1.3320.843
0.298左 1.3320.8430.668右
0.21.330.8430.668
1.3320.8430.668 1.3320.8430.668
均布等效荷载18.1/(27.5)顶层中跨
(120.312520.31253)48.035.6423.68kN/边g'5589.573.1911.2kN边中间层边跨中间层中跨
g'(120.312520.3125332.485.6423.38kNABBCCD321固端弯矩2顶层边 M5AB=1/12×23.68×7.5=102.3顶层中跨 =1/12×9.08×32=6.8kN.m中间层边跨 M=1/12×23.38×7.52=101kN.m中间层中跨 M=1/12×9.08×32=5.52kN.m纵梁引起柱端附加弯矩边框架纵梁偏向外侧,中框架纵梁偏向内侧顶层外纵 (逆时针为正顶层中纵 楼层外纵 楼层中纵 节点不平衡弯矩横向框架的节点不平衡弯矩为通过该节点的各杆件(梁)在节点处的固端弯矩与通过该节点的纵梁引起柱端横向附加弯矩之和,根据平衡原则,节点弯矩的正方向与杆端弯矩方向相反,一律以逆时针方向为正。顶层:MA5=-MD5=-102.3+5.66=-96.64kN.m楼层:MA=-MD=-101+6.10=-94.9kN.mMB=-MC=101-5.52-恒荷载作用下弯矩二次分配4-2AB跨梁端剪力层u=(l-+u-VB=-3--2--1--注:l=7.5m4-3BC跨梁端剪力层(自重作VC=-33-23-13-4-4AB跨跨中弯矩层u=(l-+u--MAB-3--2--1--注:l=7.5m4-5BC跨跨中弯矩层-MBc-33-23-13-4-6柱轴力层A轴、DB轴、C横梁端3214.3恒载作用下横向框架弯矩图4.4恒载作用下横向框架剪力图4.5恒载作用下横向框架轴力图活载作用下的框架内力均布等效荷载18.1/(27.5)顶层中跨
(120.312520.31253)16.27.52kN/边g'55863.38kN边中间层边跨中间层中跨
g'120.312520.3125316.27.52kNg'587.54.25kNABBCCD321固端弯矩顶层边
=1/12×7.52×7.52=32.49顶层中跨 =1/12×4.25×32=2.05kN.m中间层边跨 M=1/12×7.52×7.52=32.49kN.m中间层中跨 M=1/12×4.25×32=2.58kN.m纵梁引起柱端附加弯矩边框架纵梁偏向外侧,中框架纵梁偏向内侧顶层外纵 (逆时针为正顶层中纵 楼层外纵 楼层中纵 MB1=-MC1=-(2×0.5×8.1×0.5×8.1+2.5×(8.1-节点不平衡弯矩横向框架的节点不平衡弯矩为通过该节点的各杆件(梁)在节点处的固端弯矩与通过该节点的纵梁引起柱端横向附加弯矩之和,根据平衡原则,节点弯矩的正方向与杆端弯矩方向相反,一律以逆时针方向为正。顶层:MA5=-MD5=-32.49+1.27=-31.22kN.m楼层:MA=-MD=-32.49+1.27=-31.22kN.mMB=-MC=32.49-2.58-活荷载作用下弯矩二次分配4.6层u=(l-llVB=-3--2--1--注:l=7.5m层VB=ql/4VC=-ql/4363-23-13-层u=(l-V1/A=u-M=u*1.05-3--2--1--注:l=7.5m层VB=ql/4M=-MBc-363-23-13-4-12满跨活载作用下柱轴力层边柱(A轴中柱(B轴横梁纵梁 端部剪3214.7活载作用下横向框架弯矩图4-8活载作用下横向框架剪力图4-9活载作用下横向框架轴力图4.3作用下横向框架的内力计多遇水平作用下位移验水平作用下框架结构的层间位移(△u)i和顶点位移ui分别按下列公式计算:(△u)i=Vi/∑D (3-u (3-各层的层间弹性位移角θe=(△u)i/hi,根据《建筑抗震设计规范》,考虑砖填充墙抗侧力作用的框架,层间弹性位移角限值[θe]<1/550。计算过程如表示表3-8横向水平作用下的位移验hiVi[e三二—满足要求4-23Ky310101010210010010\\0\\ (4- (4-Muij=Vij(1- (4-表4-24作用下框架柱剪力及柱端弯层yMM3----2----1---- Ml=il +M Mr=ir +M V=(Ml+M Ni=∑(Vlb- (4-4-25梁端弯矩、剪力及柱轴力的计算bblbbl33--23--13--图4- 作用下弯矩 图4- 作用下框架剪力及柱轴力弯矩调
第五 框架内力组1、弯矩调幅,取β=0.9MlMlMrM
(5-(5-MM
1(1)(Ml0Mr0)5-1
(5-βMM---------------------------------------------------------------------------一般组合采用三种组合形式即可:①可变荷载效应控制时 1.2恒1.4 1.2恒K0.9活K风K②荷载效应控制时,1.35恒0.71.4活1.35恒 横向框架梁内5-2横向框架梁内力组合(一般组合1.2+1.4活跨M----VMM----V----跨M----VM----M----V----跨M----VMM----V----跨M----VM---M----V----梁跨M----VMM----端V----跨M----VM----M----V----表5-3横向框架梁内力组合(考 组合跨M----V-M-M----V----跨M----V-M-00--M----V----跨M---V-M-M---V----跨M---V--M-00--M---V---跨M---V-M-M---V----跨M---V--M-00--M---V---横向框架柱内5-4活Nmax及相应的NNmin及相应的M应的MA柱MNMNB柱M------NM-----NA柱MNMNB柱M------NM-----NA柱MNM-NV------B柱M------NM------NV表5-5横向框架柱内力组合(考虑组合活及相应的NNmin及Nmax及AM---N-M----BM------N-M------N-AM---N-M---N-BM------N-M------N-AM---N-M---N-V------BM------N-M------N-V---第六 框架梁、柱截面设框架梁截面设计注:正截面受弯承载力计算时,负弯矩处按矩形截面计算,正弯矩处按T层 fbh1 ξAbh1 y实际选用MA3--33---3--2--2---2A2--33---4--2--2---2A1--33---3--2--2---26-2AB、BC跨正截面抗震验级sREfbh1 fAbh1 y层MξA3--33---3--3--2---3A2-43---4--3--2---3A1--33---3--3--2--3强度位 0.7fbh1.25 Asv yv 6-4AB、BC跨斜截面受剪抗震验层位MlMr 0.2cfc0.42V1(0.42fbh1.25 Asv yv 框架柱截面设计表6-5框架截面压弯承载力计算Aηeξ选用钢筋ξ9999表6-6框架截面压弯承载力计算Bηeξ选用钢筋ξξ9999表6-11框架截面压弯抗震验算Aηeξ选用钢筋ξξ9-9-99表6-12框架截面压弯抗震验算Bηeξ选用钢筋ξξ9999第七章楼梯结构设计楼梯间开间为8.1m,进深为7.5m。采用板式楼梯底层,共26级踏步,踏步宽0.28m,其踏步的水平投影长度为12×0.28=3.36m。二至三层楼梯均为等跑楼梯,共24级踏步,踏步宽0.28m,其踏步的水平投影长度为11×0.28=3.08m。楼梯的踢面和踏面均采用瓷砖面层,踏面采用防滑处理,底面为水泥砂浆粉刷。混凝土强度等级C25,板采用HPB235钢筋,梁纵筋采用HRB335钢筋。楼梯板计算板倾斜 取1m宽板带计算。荷载标准值荷载分项系数 设计值:g=1.2×6.436=7.723基本组合的总荷载设计值g+q=7.723+3.5=11.223KN/m板水平计算跨度lolnb3.30.25 M=(g+q)lo2/10=11.223×3.552/10=14.143h0=120-20=100mm syA=M/(rfh sy选10@100,As=714分布筋平台板计算荷载标准值荷载分项系数 设计值:g=1.2×3.39=4.068 p=g+q=7.568KN/ml0=2500-0M=(g+q)l2/8=7.568×2.1252/8=4.2720α=M/(fb,h
c 1.09.61000ξ=1-(1- A=ξfb,h/f=0.0731.09.61000 选8@180,As=279分布筋6@200,l0=1400-0M=(g+q)l2/8=7.568×1.3252/8=1.6610α=M/(fb,h
c 1.09.61000ξ=1-(1- A=ξfb,h/f=0.0271.09.61000 选6@180,As=157分布筋6@200,平台梁计算设平台梁截面b=250mm 荷载标准值0.25×(0.3-[2×(0.3-g2=4.114×1.2=4.937活荷载:梯段板传来:2.5×3.3/2=4.1252.52.20.123.05 q14.1251.45.775q23.051.44.27平台梁2的荷载 荷载标准值0.25×(0.3-[2×(0.3-g2=2.789×1.2=3.347活荷载:梯段板传来:2.5×3.3/2=4.125平台板传来:2.51.40.25 q22.351.43.29KN/m l=1.05l=1.05×(4.5-0.25)=4.473 V1qgl/21gq 1 2=114.4234.1254.473/2
4.937
= M=(g+q)l =(14.423+4.125)×4.4732/8/2+(4.937+4.27)fb,=1l14.473746f6
按梁净距考虑b'b 240 不按梁的高度h'fh0=300-35=265由于b'/h100265
取b' fb'h'(hh'f)1.014.3746100(265100)229.358KN1cf >46.22KN
syA=M/(rfh sys选 20实有A=942s0.25cfcbho0.251.014.3250265227.37KN0.7ftbho0.71.4325026563.664KNV选肢8@200, l=1.05l=1.05×(4.5-0.24)=4.473 V1qgl/21gq 1 2=114.4234.1254.473/2
3.347
==(14.423+4.125)×4.4732/8/2+(3.347+3.29)b,=1l14.473746 6
按梁净距考虑b'b 250 不按梁的高度h'fh0=300-35=265由于b'/h100265
取b' fb'h'(hh'f)1.014.3746100(265100)229.358KN1cf TAs=M/(rsfyh0)=44.951×106/(210×0.969×265)=834选 20实有As=9420.25cfcbho0.251.014.3250265227.37KN0.7ftbho0.71.4325026563.664KNV选肢8@200,第八章现浇楼盖设计现浇楼盖设计楼板厚120mm2kN/m22.5kN/m2。钢筋混凝土板泊松比ν=1/6。1恒载设计值 活载设计 走廊恒载设计 g=1.2×4.01=活载设计 所以教室部 p=g+qp,=g+p,,=走廊部 p=g+qp,=g+p,,=2、A区格板: lx/ly四边简支时的系数(表中α为弯矩系数——0.0508(gq/2)
x0.0821(q/2)l0.05085.953.7520.08211.48.45kNy0.0257(gq/2)
x0.0389(q/2)l0.02575.953.7520.03891.44.2kN 0.1065(gq)l20.10657.353.75215.85kN 0.0757(gq)l20.07577.353.75211.27kN 3.截面设计板跨中截面两个方向有效高度的确定假定钢筋选用φ10h0xhas120155h0yhasd12015510板支座截面有效高度为h0has120155由于楼盖周边按铰支考虑,因此I角区板的弯矩不折减,而区格ledl01.5的区格板的跨中弯矩和支座弯矩可减少20%中弯矩值均较小,可不做折减。计算配筋时,近似取内力臂系数s0.95
y表8- 双向板配筋计算M(mm2/m实配(mm2/mAlxlyBlxlyClxlyDlxly第九章基础设计荷载计算按照《地础设计规范》和《建筑抗震设计规范》的有关规定,上部结构传至基础顶面上的荷载只需按照荷载效应的基本组合来分析确定。混凝土设计强度等级采用C30,基础底板设计采用HRB335钢,fy=300N/mm,室内外高差为0.45m,基础埋置深度为1.2m,基础高度600mm承载力特征承载力特征12345基础承载力计算时,应采用荷载标准组合。恒k0.9活k风k或恒k活k,取两者中大者。以轴线3为计算单元进行基础设计,上部结构传来柱底荷载标准值:柱A柱MNV---B柱M---NV底层墙、基础连系梁传来荷载标准值(连系梁顶面标高同基础顶面)墙重:0.00以上:5.5×0.2×3.9=4.29kN/m(粉煤灰轻渣空心砌=5.5kNm30.00以下:19×0.24×0.95=4.33kN/m(采用一般粘土砖,=19kN/m3250.40.242.4kN/4.294.332.411.02kNm(与纵向轴线距离0.15)柱A基础底面:FK=842.74+11.024.5=892.33kNMK=37.01+11.024.5×0.15+16.55×0.6=54.38kN·mB基础底面:FK=1158.71+11.024.5=1208.3kNMK=14.38+11.024.5×0.15+8.89确定基础底面积A、D柱下采用钢筋混凝土独立基础,B、C采用钢筋混凝土联合基础,根据地质条件取②层粉质粘土层作为持力层,设基础在持力层中的嵌固深度为0.1m,室外埋深1.2,室内埋深1.65m,(0.45m。1.A柱:初估基底尺寸由于基底尺寸未知,持力层土的承载力特征值先仅考虑深度修正,由于持力层为粉质粘土,故取d=1.6m=(16.51.0+160.5)/1.5=17.4kN/fafakdmd0.5=100+1.617.4(1.5-0.5)=192.84
1.1A k =6.2mfalb
b 按持力层强度验算基底尺寸:基底形心处竖向力:Fk=892.33+202.32.8基底形心处弯矩 Mk=54.38kN
1(1.5+1.95)=1114.52eMk=54.38=0.049m<l=0.47 pFk1114.51173.1kPa< 2.3 p(16e)173.1(160.049)191.28kPa<1.2 满足要求。2.B柱:B、C轴向距仅3m,D、E柱分别设为独立基础场地不够,所以将两柱做成双柱联合基础。因为两柱荷载对称,所以联合基础近似按中心受压设计基础,基础埋1.2m 2192.8420
15.71m设l=5.6m,b=3m,按持力层强度验算基底尺寸:基底形心处竖向力:
=1208.3+205.631(1.5+1.65)=1787.92基底形心处弯矩:e
Mk=27.15kN =0.015m =0.93 pk 5.63106.42kPa<fa p(16e)106.42(160.015)108.13kPa<1.2 满足要求。基础结构设计(混凝土采用1.荷载设计值基础结构设计时,需按荷载效应基本组合的设计值进行计算。A柱:F=1039.76+11.02×4.5×1.2=1099.27kN(B-C)FBFC1479.2411.024.51.2BC18.2111.024.51.20.150.611.262.A柱:基底净反力:P
2.3
PjmaxFM170.69
kj
2.36
冲切验算hpatat2h045025601620mmb2300mmab1620mmam(atab)2(1ath)b(bbch (2.80.50.56)2.3(2.30.5 Flpjmaxl194.41.240.7hpftamh00.71.01.101060560103594.2kN基础高度满足要求。
1.35A
1.352.3
1(la)2 P)(2bb) P j j 1=
0.9h0f
1430mm20.9560选
1 bb22la j j 1194.4146.982.30.5222.80.5=140.56
s0.9h0af 0.956010s配
962mm3(基础高 0.60m(等厚基底净反力:P
1538.7525.6冲切验算:计算简图见图9-2。要求Fl0.7hpftumb0acbcumach040.50.564hp1.0,ft1.43N/Fl
2P1538.750.525602183.18j0.7hpftumh00.71.01.104.245602376.77kNj 满足要求。图9- 冲切验算计算简图弯矩和剪力的计算结纵向内力计算bPj3183.18549.54kNm,弯矩和剪力的计算结果见图9-4柱边剪力 hs0.7hsftbh00.71.01.1035601681.68kN满足要求。纵向配筋计算板底层配筋: 0.9h0f
0.9560折算成每米板宽3596.62/5.6=642mm选 As=770mm板顶层配筋:按构造配筋φ10@200As=393mm横向配筋柱下等效为:ac20.75h00.520.750.5601.34m bb2柱边弯矩: B c 30.5 400.71k S
0.956014
2718mm折算成每米2718/3=906mm选Φ14@170s905mm第十章科技资料翻一、科技资料原文CastleBridge,Weston-Super-Mare,CastleBridgeisaminimal-costsolutiontothedilemmaofarestrictedcrossingofamainrailwaylinewithinaresidentialdevelopmentarea.Theworksemploysreinforcedearthembankments,integratedbridgedeckandabutmentconstructionandprecastpar tsolutions eandminimisethesafety,maintenanceandcostissuesassociatedwiththescheme.Thisp rdescribesaminimal-costsolutiontoaroadbridgeoverarailway,onarestrictedsite,toopenuplandforresidentialdevelopment.LockingCastleisanareaunderheavyresidentialdevelopmentontheeasternsideofWeston-SuperMare.OverseeingthedevelopmentandclientforthebridgeisLockingCastleLimited,acompanyownedinconsortiumbytwomajorhousebuilders.TheplanningauthorityisNorthSomersetDistrictCouncil(NSDC).ThedevelopmentareaissplitinhalfbytheBristoltoExetermainrailwayline.Planningconditionsfortheareastipulatedthatthesouthernareacouldnotbeinhabiteduntilacrossingofthisrailwaylinehadbeenbuilt.Fig.1showstheLockingCastledevelopmentandtheimportanceofthebridgetothearea.ThedevelopmentareaissituatedontheedgeoftheSomersetLevels,anareanotedforitspo roundconditions,andisboundedbyarailwaylinetoWestontothenorthandtheA321dualcarriagewaytothesouth.MoorLane,anexistingcountryroad,wastheonlyaccesstothesouthernareaandwasnotsuitableforthetrafficexpectedbytheincreasedhousingstock.OwingtothenatureoftheSomersetLevels,thenewroadovertherailwaylineswouldhavetoberaisedonembankmentsonbothsidesofthetrack.Anareaoflandhadbeenforthecrossingbutthisareawassmallincomparisontoanormalcrossing,whichledtoanumberofcompromisesinthelayoutofthestructure.Ablanket20mphspeedlimit,coupledwitharea-widespeedrestrictionmeasures,coverthewholeLockingCastledevelopment.Thisenabledtheroadstobelaidtoatightradiusontheapproachestothebridgeandalsoallowedtheclienttoagree,withNSDC,thatsteeperthannormalgradientscouldbeusedtoattaintheelevationoftheThecliengineer,Arup,agreedgeneraldesignprinciplesandthepreliminaryApprovalinPrinciple(AIP)withNSDCpriortotheissueoftenders.ThecontractwasawardedtoDean&DyballinJuly2000foratendervalue£1·31millionandthecontractperiodwassetat34weeksforacompletioninApril2001.AsimplifiedprogrammeisshowninFig.2.DuringthetenderstagePellFrisannlookedatanumberofrefinementstothetenderdesignandfollowingtheawardoftheschemeundertookafullvalueengineeringexerciseinconjunctionwiththecontractor,Dean&Dyball.TheoriginaldesigncalledforsteelH-pilesunderthebridgeabutmentareasadjacenttotherailwaylinewherelimitedverticalmovementofthetrackwasessential.Followingareviewofthegroundconditionsandbasedonpreviousexperience,theteamsuccessfullyarguedthatcast-in-situdisplacementpiles,usedelsewhereundertheembankments,couldbedrivenclosertothetrackswithoutanyproblem.Thetracksweremonitoredduringpilingoperationsandlevelchangesoflessthan6mmwererecordedalongtheaffectedsection.Thegroundconditionsatthesiteconsistofmadegroundoverlyingupto19mofsoftalluvialclay.Belowthiseithera2mlayeroffirm/stiffclayonmudstoneorsandstonebedrockexists.Twotypesofdrivencast-in-situpilesweredesignedbyKeller,340and380mmmeter,tocopewiththedifferentloadingconditionscausedbythebridgeandtheembankment.Theseweredriventorefusalfromtheexistinggroundlevel.Thepo roundcontributedtorapidpileinstallationandratesofuptoeightpilesadaywererecorded.Thetotaldrivenlengthrangedbetween22and24m.PiledesigninformationisshowninTable1.Testsconfirmedtheintegrityofthedesignandindicatedaumsettlementatworkingloadof6mm.AconcretepilecapwasoriginallyshownabovetheH-pilestodistributeloadsfromthebridgeabutmentstothepiles.ByreplacingtheH-pileswiththedrivencast-in-situpiles,butatslightlyreducedspa-cing,itwaspossibletoeliminatethepilecapsandextendsavingonconstructiontimeaswellascost.LOADTRANSFERMATTRESSANDThepileswereusedtosupportaloadtransfermattress,whichwasconstructedfromlayersofstoneandgeomembranegrids.Enlargedheileshadbeenshownonthetenderdrawingbut,againdrawingonpreviousexperience,PellFrisanndemonstratedthatthisdesignmethodcouldbeutilisedtoreducethedepthofthemattressanditwassuggestedthatthisapproachbeemployedatLockingCastle.Bycastinganenlargedheadof1·1mdiameteratthetopofeachpile,thedistancetothenextpilewasreducedandthusthespanofthegeomembranesinthemattresslayerswasdecreased.Giventhatthearchingeffectinthemattressreliesonanangleof458fromthepiletothetopofthemattress,thedepthofstonecouldbereducedTheoveralldepthofthemattresswasreducedfrom1500mmto900mmbyrationalisingthedesigninthisway.Thisalsoledtosavingsinreducedexcavationtotheoriginalgroundlevel(Fig.3).Abovethemattresstheembankmentrisestoaumheightof6·3mtocarriagewaylevel.Toreducethespreadoftheembankment,thetenderdesignoriginallyindicatedfacedprecastconcretepanelstoverticalsidewalls.ThiswasamendedlaterinthetenderstagetoverticalwallsofclassAredbrickwork,forcingachangeinthedesignofthereinforcedembankment.ThedesignoftheembankmentwassubcontractedtoTensar,basedonaspecificationdevelopedbyPellFrisann.Theirsystemcompriseduniaxialgeogridslaidatvaryingverticalspacingoncompactedgranularmaterial.Class6I/Jgranularmaterial,inaccordancewiththeSpecificationforHighwayWorks1wasspecifiedandthismadeupthebulkofembankment.Thegridswerethenanchoredtodry-laidinterlockingconcreteblocksformingthenear-verticalfaceoftheembankment.Averticaldrainagelayerseparatedthe6I/Jmaterialfromtheconcreteblocks.TieswereinstalledbetweenthejointsintheconcreteblocksandtheclassAbrickworkfacingwasconstructedinfront.Fig.4showstheembankmentcrosssection.Thedesignoftheembank-mentreliesonthedensityofthecompactedproductbeingstructure.Thisdoesnotreducethedesignlifeofthestructurewhichwassetatthestandard120years.Difficul-tieswiththismethodofconstructionarewellknownandincludeaccountingfordifferentialsettlement,increasedhoggingmomentsatsofthebeamsandcongestionofsteelinthesmallareasbetweenthebeams.Sufficientstructuralstrengthisinbuilttocounteractthestressesofoneabutmentmovingrelativetotheother.Thedesignwasalsorestrictedbytheneedtokeepthesamedepthofbeamthathadbeenidentifiedonthetenderdrawings.Increas-ingthebeamsfromaY3toaY4wouldhavesimplifiedthedesignbutwouldhavethepenaltyofhigherembankments,largerpileandbridgeloads,moreimportedmaterial onsistentvalue.Tofacilitatethis,Dean&Dyballsourced40mmscalsfromTarmacaggregateswhichnotonlyconsistentlymetthe6I/Jgradingbutwerealsosuitableforuseintheloadtransfermattress.In rmanentmaterialstestingpresencewaskeptonsitewhiletheembankmentswerebeingconstructed.Thematerialwasveryeasytocompact,requiringnomorethana1·5tvibratingsteelroller,and,duetoitsnature,wasverysuitableforlayinginterallywetconditionsthatprevailedatthetime.Alltestsshowedthatminimumcompactionof94%wasbeingachievedandtherateofriseoftheembankmentexceededthecontractors’expectations.BRIDGEANDThebridgedeckconsistedofprestressedY3precastconcretebeamsandaninsitureinforcedconcreteslabspanning20movertherailwaylines.Figs5and6showthelong-andcrosssectionofthebridge.Thebeamsweresupportedonbankseatsfoundedonthereinforcedembankments.Thenarrownatureoftheembankmentswasaccentuatedatthebankseatareasanditwassoonobviousthattheseweretoonarrowtoavoidrestingthestructureontheconcreteblocksidewallsoftheembankments.To ethis,theembankmentswerewidenedlocallyinthevicinityoftheabutmentstoenablethebankseattositwhollyontheembankment(Fig.7).Asthischangewastoolargetohide,afeaturewasmadeofthewidenedareabytheuseofstrongrightanglesinthebrickworkandpre-castconcrete(PCC)flagstoneslaidaroundthetopofthebrickwalladjacenttotheabutments.Thefinallayoutgaveaddedeffectandaccentuatedthebridgeanditsapproaches.Onceplaced,thePCCbeamswerecastintoeachbankseatbytheadditionofanintegralendwall.Thiseliminatedtheneedforbearingsandmovementjoints,thuscreatinganintegralandsteepergradientsontheapproachroads.Pressuretokeepthedeckconstructionasshallowaspossiblecamealsofromthediscoverythattheoriginaltenderdrawingshadnotallowedforadeckcrossfalltoshedwater.Thisraisedthesouthernembankment150mmhigherthananticipated.Thedesignwasfurthercomplicatedbytherequirementto servicesunderthebridgedeck,betweenthebeams,andthroughtheintegralendwall.Theseserviceswerea250mmdiameterwatermain(througha350mmdiameterduct),anHVelectriccableandafour-wayBTduct.Thelossofsectionwasebyagreementtoruntheelectriccableoverthetopofthedeck,ratherthanbelowit,asitwasnotphysicallypossibletobringitthroughtheidentifiedlocationonthetenderdrawings.Thelossofavailablewallsectionledtotherequirementforsmallernumbersof,butlargerdiameter,barsfittedaroundtheholesthroughwalls.Thisisturnmadethedetailingandfittingofthesebarsoneofthetrickiesementsofthejob.Althoughgenerallyfixedbythelayoutoftheoverallscheme,theverticalalignmentwasredesignedto modatethechangeinalignmentofthebridgedeck.Thisledtoanincreasedgradientonthesouthernembankmentbutalsohadaknock-oneffectontheloadingofthebridge.Toprovideareasonablerolloveracrossthedeckfromthesteepgradientsoneitherside,thedepthofsurfacingincreasedtoover300mmatitsdeepestpoint.ThisgreaterloadingincreasedtheamountofprestressinginthePCCbeams.Atanearlystageinthecontract,Dean&Dyballhadfocusedontheplacingofbeamsasacriticalphaseofthescheme,especiallyastheworkwastobeundertakeninJanuary.Toacceleratetheplacingofpermanentformworkbetweenthebeams,thecontractorrequestedthattheedgebeamsbedesignedtoincludeinsertstosupportthetemporaryhandrails.ThesewerecastinatadepthsuchthattheywouldbehiddeninthefinalschemebytailsonthehighcontainmentprecastP6par tacrossthebridge.Thetemporaryhandrailswerefittedtotheedgebeamspriortoplacement(Fig.8).ThisenabledthecontractortostartplacingpermanentformworkbeforeallthePCCbeamshadbeenlaid.Thisapproachreducedthetimeoftrackpossession,withtheelevenbeamsandpermanentformworkallinstalledwithinfivehours.APPROACHEMBANKMENT Standardpar tsoftypeP2weredesignedtoprotecttheedgesoftheapproachembankmentsandthesupportforthesepresentedtheteamwithaconsiderablechallenge.Originallyshownasinsitureinforcedconcrete,itsoonbecameclearthatthissolutionwouldprovidethecontractorwithasignificanthealthandsafetyproblem.Castingedgebeams6mabovethegroundwaspotentiallydangerous,requiredalotofscaffoldingmandpermanentformwork,andwouldaddweekstothetightconstructionprogramme. ethis,thecontractorproposedusingprecastconcretepar supportsinlieuofinsitu.However,duetothetightcentrelineradiionthebridgeapproaches(50mradius),thelengthofeachPCCsectionwouldneedtobelimitedtoavoida‘threepennypiece’appearance.Thiscreateditsownproblemswhendesigncalculationsshowedthcidentalloadingsonthepar twouldnotberestrainedbytheuseofsmalldiscretePCCunits.Acompromisesolutionconsistingofaprecastedgepieceandaninsitusectionunderthefootway/cyclewayconstructionwaseventuallydevelopedto theproblems.Toachievethedesiredeffect,theprecastedgebeamwouldneedtobeofsufficientsizeandsh torestonthebrick/blockedgingoftheembankmentwithoutbeingunstable.Inaddition,thesidesofeachunitwouldneedtobeslightlytredto modatetheradiiofthebends,andthepar tsupportpostboltcradlewouldneedtobepre-installedatthecorrectspacing.Teamworkbetweenthedesignerandcontractorledtoareductioninthenumberofpaneltypesfrom30to17,ranginginlengthfromaumof3·65mtoaminimumof1·98m,whilekeethepar tposts onstantspacingalongthemainlengthoftheembankments(Fig.9).Theprecastunitsweretiedtogetherbymeansofaninsituelement.Thiscomprisedaslabextendingtheentirelengthoftheem
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考化学一轮复习专练14铁铜及其化合物含解析新人教版
- 2024高考化学一轮复习第一部分考点13化学与可持续发展强化训练含解析
- 2024高考化学一轮复习第四章非金属及其化合物第二讲富集在海水中的元素-氯规范演练含解析新人教版
- 2024高考历史一轮复习模块四选修部分第1讲历史上重大改革回眸学案含解析人民版
- 学校视频监控配置情况汇报
- 钢结构厂房工程施工要点
- 2024年湖北三峡职业技术学院高职单招语文历年参考题库含答案解析
- 平安福产说会修正版
- 八年级物理下册121杠杆课件新版新人教版
- 二零二五年度高校毕业生就业见习实习实训基地安全管理合同3篇
- 资质模型与测评技术(中国人民大学劳动人事学院 孙健敏)
- SMW工法型钢拔除专项施工方案
- 大健康商业招商计划书
- 高一上半学期总结教学课件
- 高速公路初步设计汇报课件
- 申根签证申请表模板
- 企业会计准则、应用指南及附录2023年8月
- 2022年浙江省事业编制招聘考试《计算机专业基础知识》真题试卷【1000题】
- 认养一头牛IPO上市招股书
- GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法
- GB/T 23574-2009金属切削机床油雾浓度的测量方法
评论
0/150
提交评论