2022-2023学年山东省滨州市北城英才学校九年级数学第一学期期末学业水平测试试题含解析_第1页
2022-2023学年山东省滨州市北城英才学校九年级数学第一学期期末学业水平测试试题含解析_第2页
2022-2023学年山东省滨州市北城英才学校九年级数学第一学期期末学业水平测试试题含解析_第3页
2022-2023学年山东省滨州市北城英才学校九年级数学第一学期期末学业水平测试试题含解析_第4页
2022-2023学年山东省滨州市北城英才学校九年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在以下四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm3.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程()A. B. C.D.4.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则AE的长为()A. B. C. D.5.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是()A. B. C. D.6.把抛物线先向左平移1个单位,再向上平移个单位后,得抛物线,则的值是()A.-2 B.2 C.8 D.147.平面直角坐标系内点关于点的对称点坐标是()A.(-2, -1) B.(-3, -1) C.(-1, -2) D.(-1, -3)8.如图,矩形ABCD中,AB=4,AD=8,E为BC的中点,F为DE上一动点,P为AF中点,连接PC,则PC的最小值是()A.4 B.8 C.2 D.49.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是()A. B. C.1 D.﹣110.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°11.下列二次函数,图像与轴只有一个交点的是()A. B.C. D.12.若直线与半径为5的相离,则圆心与直线的距离为()A. B. C. D.二、填空题(每题4分,共24分)13.把一袋黑豆中放入红豆100粒,搅匀后取出100粒豆子,其中红豆5粒,则该袋中约有黑豆_______粒.14.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)15.用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_____.16.若抛物线y=2x2+6x+m与x轴有两个交点,则m的取值范围是_____.17.若点是双曲线上的点,则__________(填“>”,“<”或“=”)18.在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为________.三、解答题(共78分)19.(8分)如图,已知抛物线y=﹣x2+bx+c的图象经过(1,0),(0,3)两点.(1)求b,c的值;(2)写出当y>0时,x的取值范围.20.(8分)在平面直角坐标系中,已知抛物线y1=x2﹣4x+4的顶点为A,直线y2=kx﹣2k(k≠0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;(1)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:①当k>0时,存在实数t(0≤t≤2)使得PQ=1.②当﹣2<k<﹣0.5时,不存在满足条件的t(0≤t≤2)使得PQ=1.21.(8分)解方程:x2﹣x﹣12=1.22.(10分)(1)已知如图1,在中,,,点在内部,点在外部,满足,且.求证:.(2)已知如图2,在等边内有一点,满足,,,求的度数.23.(10分)定义:如果三角形的两个内角与满足,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在中,,,,是的平分线.①证明是“类直角三角形”;②试问在边上是否存在点(异于点),使得也是“类直角三角形”?若存在,请求出的长;若不存在,请说明理由.类比拓展(2)如图2,内接于,直径,弦,点是弧上一动点(包括端点,),延长至点,连结,且,当是“类直角三角形”时,求的长.24.(10分)如图,抛物线y=﹣x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)当点P在线段OB上运动时,直线1交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.25.(12分)自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线表示.(1)________;(2)求图1表示的售价与时间的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?26.已知关于x的一元二次方程有两个不相等的实数根.求k的取值范围;若k为负整数,求此时方程的根.

参考答案一、选择题(每题4分,共48分)1、B【分析】旋转180后能够与原图形完全重合即是中心对称图形,根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【分析】证明△CAB∽△CDE,然后利用相似比得到DE的长.【详解】∵AB∥DE,∴△CAB∽△CDE,∴,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用,用相似三角形对应边的比相等的性质求物体的高度.3、D【解析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x,依题意得60.05%(1+x)2=1%.

即60.05(1+x)2=1.

故选D.4、D【分析】如图,作EH⊥AB于H,利用∠CBD的余弦可求出BD的长,利用∠ABD的余弦可求出AB的长,利用∠EBH的正弦和余弦可求出BH、HE的长,即可求出AH的长,利用勾股定理求出AE的长即可.【详解】如图,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵点E为BC中点,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故选:D.【点睛】本题考查解直角三角形的应用,正确作出辅助线构建直角三角形并熟记三角函数的定义是解题关键.5、A【分析】代入两点的坐标可得,,所以,由抛物线的顶点在第一象限可得且,可得,再根据、,可得S的变化范围.【详解】将点(0,1)代入中可得将点(-1,0)代入中可得∴∵二次函数图象的顶点在第一象限∴对称轴且∴∵,∴∴故答案为:A.【点睛】本题考查了二次函数的系数问题,掌握二次函数的性质以及各系数间的关系是解题的关键.6、B【分析】将改写成顶点式,然后按照题意将进行平移,写出其平移后的解析式,从而求解.【详解】解:由题意可知抛物线先向左平移1个单位,再向上平移个单位∴∴n=2故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点坐标的变化确定函数图象的变化可以使求解更加简便.7、B【解析】通过画图和中心对称的性质求解.【详解】解:如图,点P(1,1)关于点Q(−1,0)的对称点坐标为(−3,−1).故选B.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.8、D【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当CP⊥P1P2时,PC取得最小值;由矩形的性质以及已知的数据即可知CP1⊥P1P2,故CP的最小值为CP1的长,由勾股定理求解即可.【详解】解:如图:当点F与点D重合时,点P在P1处,AP1=DP1,当点F与点E重合时,点P在P2处,EP2=AP2,∴P1P2∥DE且P1P2=DE当点F在ED上除点D、E的位置处时,有AP=FP由中位线定理可知:P1P∥DF且P1P=DF∴点P的运动轨迹是线段P1P2,∴当CP⊥P1P2时,PC取得最小值∵矩形ABCD中,AB=4,AD=8,E为BC的中点,∴△ABE、△CDE、△DCP1为等腰直角三角形,DP1=2∴∠BAE=∠DAE=∠DP1C=45°,∠AED=90°∴∠AP2P1=90°∴∠AP1P2=45°∴∠P2P1C=90°,即CP1⊥P1P2,∴CP的最小值为CP1的长在等腰直角CDP1中,DP1=CD=4,∴CP1=4∴PB的最小值是4.故选:D.【点睛】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.9、B【分析】利用计算即可求解.【详解】根据题意得x1+x2=﹣.故选:B.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟知一元二次方程两根之和与两根之积与系数之间的关系.10、C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11、C【分析】根据抛物线y=ax2+bx+c(a≠0)与x轴只有一个交点,可知b2-4ac=0,据此判断即可.【详解】解:∵二次函数图象与x轴只有一个交点,∴b2-4ac=0,A、b2-4ac=22-4×1×(-1)=8,故本选项错误;B、b2-4ac=72-4×(-2)×(-7)=-7,故本选项错误;C、b2-4ac=(-12)2-4×4×9=0,故本选项正确;D、b2-4ac=(-4)2-4×1×16=-48,故本选项错误,故选:C.【点睛】本题考查了二次函数与x轴的交点,根据二次函数y=ax2+bx+c(a≠0)的图象与x轴只有一个交点时,得到b2-4ac=0是解题的关键.12、B【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线与半径为5的相离,∴圆心与直线的距离满足:.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.二、填空题(每题4分,共24分)13、1【分析】先根据取出100粒豆子,其中有红豆5粒,确定取出红豆的概率为5%,然后用100÷5%求出豆子总数,最后再减去红豆子数即可.【详解】解:由题意得:取出100粒豆子,红豆的概率为5%,则豆子总数为100÷5%=2000粒,所以该袋中黑豆约有2000-100=1粒.故答案为1.【点睛】本题考查了用频率估计概率,弄清题意、学会用样本估计总体的方法是解答本题的关键.14、1【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】设她应选择高跟鞋的高度是xcm,

则≈0.618,

解得:x≈1,且符合题意.

故答案为1.【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比.15、12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可.【详解】设这个圆锥的母线长为,依题意,有:,解得:,故答案为:12.【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.16、【分析】由抛物线与x轴有两个交点,可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=2x2+6x+m与x轴有两个交点,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案为:m.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac>0时,抛物线与x轴有2个交点”是解答本题的关键.17、>【分析】根据得出反比例图象在每一象限内y随x的增大而减小,再比较两点的横坐标大小,即可比较两点的纵坐标大小.【详解】解:∵,,∴反比例函数的图象在第一、三象限内,且在每一象限内y随x的增大而减小,∵点是双曲线上的点,且1<2,∴,故答案为:>.【点睛】本题考查了反比例函数的图象与性质,掌握k>0时,反比例函数图象在每一象限内y随x的增大而减小是解题的关键.18、1【分析】根据同一时刻物高与影长成正比即可得出结论.【详解】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴,解得h=1(m).故答案为1.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.三、解答题(共78分)19、(1)b=-2,c=3;(2)当y>0时,﹣3<x<1.【分析】(1)由题意求得b、c的值;

(2)当y>0时,即图象在第一、二象限的部分,再求出抛物线和x轴的两个交点坐标,即得x的取值范围;【详解】(1)根据题意,将(1,0)、(0,3)代入,得:解得:(2)由(1)知抛物线的解析式为当y=0时,解得:或x=1,则抛物线与x轴的交点为∴当y>0时,﹣3<x<1.【点睛】考查待定系数法求二次函数解析式,抛物线与x轴的交点,二次函数的性质,数形结合是解题的关键.20、(1)直线经过A点;(2)B(1,1)或B(1,1);(1)①正确,②正确.【解析】(1)将抛物线解析式整理成顶点式形式,然后写出顶点A的坐标,将点A的坐标代入直线的解析式判断即可;(2)OA=2,△OAB面积为1时,根据三角形的面积公式,求出点B的纵坐标,代入抛物线的解析式即可求出点B的横坐标,即可求解.

(1)①点M(t,0),则点P(t,t2﹣4t+4),点Q(t,kt﹣2k),若k>0:当0≤t≤2时,P在Q点上方时,t2-4t+4-kt-2k=3,整理得t2﹣(4+k)t+(1+2k)=0,求出△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,②分当P在Q点下方,当P在Q点上方时,两种情况进行分类讨论.【详解】(1)y1顶点A(2,0)当x=2时,由2k-2k=0,∴直线经过A点.(2)OA=2,△OAB面积为1时,S△OAByB令y解得:x1即点B的坐标为:B(1,1)或B(1,1),(1)∵点M(t,0),∴点P(t,t2﹣4t+4),点Q(t,kt﹣2k),①若k>0:当0≤t≤2时,P在Q点上方时,∵PQ=1∴t2﹣(4+k)t+(4+2k)=1整理得t2﹣(4+k)t+(1+2k)=0∵△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,此方程有解∴①正确.②若k<0:1)当P在Q点下方,∴t2﹣(4+k)t+(4+2k)=﹣1∴t2﹣(4+k)t+7+2k=0∵△=b2﹣4ac=(4+k)2﹣4(7+2k)=k2﹣12∴当存在PQ=1时,k2﹣12≥0∴k≤-23或k≥2∴当﹣2<k<﹣0.5时,不存在满足条件的t,2)当P在Q点上方时,∴t2﹣(4+k)t+(4+2k)=1∵△=k2+12>0,此方程有解又∵t1+t1∴正根>2∴在[0,2]上不存在满足条件的t,∴②正确-【点睛】属于二次函数综合题,考查二次函数图象上点的坐标特征,三角形的面积公式,一元二次方程根的判别式等,综合性比较强,难度较大.21、x1=﹣3,x2=2.【解析】试题分析:方程左边利用十字相乘法分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解.试题解析:解:分解因式得:(x+3)(x﹣2)=1,可得x+3=1或x﹣2=1,解得:x1=﹣3,x2=2.22、(1)详见解析;(2)150°【分析】(1)先证∠ABD=∠CBE,根据SAS可证△ABD≌△CBE;(2)把线段PC以点C为中心顺时针旋转60°到线段CQ处,连结AQ.根据旋转性质得△PCQ是等边三角形,根据等边三角形性质证△BCP≌△ACQ(SAS),得BP=AQ=4,∠BPC=∠AQC,根据勾股定理逆定理可得∠AQP=90°,进一步推出∠BPC=∠AQC=∠AQP+∠PQC=90°+60°.【详解】(1)证明:∵∠ABC=90°,BD⊥BE∴∠ABC=∠DBE=90°即∠ABD+∠DBC=∠DBC+∠CBE∴∠ABD=∠CBE.又∵AB=CB,BD=BE∴△ABD≌△CBE(SAS).(2)如图,把线段PC以点C为中心顺时针旋转60°到线段CQ处,连结AQ.由旋转知识可得:∠PCQ=60°,CP=CQ=1,∴△PCQ是等边三角形,∴CP=CQ=PQ=1.又∵△ABC是等边三角形,∴∠ACB=60°=∠PCQ,BC=AC,∴∠BCP+∠PCA=∠PCA+∠ACQ,即∠BCP=∠ACQ.在△BCP与△ACQ中∴△BCP≌△ACQ(SAS)∴BP=AQ=4,∠BPC=∠AQC.又∵PA=5,∴.∴∠AQP=90°又∵△PCQ是等边三角形,∴∠PQC=60°∴∠BPC=∠AQC=∠AQP+∠PQC=90°+60°=150°∴∠BPC=150°.【点睛】考核知识点:等边三角形,全等三角形,旋转,勾股定理.根据旋转性质和全等三角形判定和性质求出边和角的关系是关键.23、(1)①证明见解析,②存在,;(2)或.【分析】(1)①证明∠A+2∠ABD=90°即可解决问题.

②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.证明△ABC∽△BEC,可得,由此构建方程即可解决问题.

(2)分两种情形:①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA.

②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,可证∠C+2∠ABC=90°,利用相似三角形的性质构建方程即可解决问题.【详解】(1)①证明:如图1中,∵是的角平分线,∴,∵,∴,∴,∴为“类直角三角形”.②如图1中,假设在边设上存在点(异于点),使得是“类直角三角形”.在中,∵,,∴,∵,∴,∵∴,∴,∴,∴,(2)∵是直径,∴,∵,,∴,①如图2中,当时,作点关于直线的对称点,连接,.则点在上,且,∵,且,∴,∴,,共线,∵∴,∴,∴,即∴.②如图3中,由①可知,点,,共线,当点与共线时,由对称性可知,平分,∴,∵,,∴,∴,即,∴,且中解得综上所述,当是“类直角三角形”时,的长为或.【点睛】本题考查了相似三角形的判定和性质,“类直角三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.24、(1)A(﹣1,0),B(4,0),C(0,2);(2)m=2时,四边形CQMD是平行四边形;(3)存在,点Q(3,2)或(﹣1,0).【分析】(1)令抛物线关系式中的x=0或y=0,分别求出y、x的值,进而求出与x轴,y轴的交点坐标;(2)用m表示出点Q,M的纵坐标,进而表示QM的长,使CD=QM,即可求出m的值;(3)分三种情况进行解答,即①∠MBQ=90°,②∠MQB=90°,③∠QMB=90°分别画出相应图形进行解答.【详解】解:(1)抛物线y=﹣x2+x+2,当x=0时,y=2,因此点C(0,2),当y=0时,即:﹣x2+x+2=0,解得x1=4,x2=﹣1,因此点A(﹣1,0),B(4,0),故:A(﹣1,0),B(4,0),C(0,2);(2)∵点D与点C关于x轴对称,∴点D(0,﹣2),CD=4,设直线BD的关系式为y=kx+b,把D(0,﹣2),B(4,0)代入得,,解得,k=,b=﹣2,∴直线BD的关系式为y=x﹣2设M(m,m﹣2),Q(m,﹣m2+m+2),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论