版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.当x=1时,代数式2ax2+bx的值为5,当x=2时,代数式ax2+bx﹣3的值为()A.﹣ B.2 C.7 D.172.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=03.一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根4.如图,小颖周末到图书馆走到十字路口处,记不清前面哪条路通往图书馆,那么她能一次选对路的概率是()A. B. C. D.05.下列四个几何体中,主视图与俯视图不同的几何体是()A. B.C. D.6.如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是()A.8 B. C.32 D.7.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当1<a<5时,点B在⊙A内B.当a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外8.如图,是的直径,点是延长线上一点,是的切线,点是切点,,若半径为,则图中阴影部分的面积为()A. B. C. D.9.如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是()A.a=﹣1 B.a= C.a=1 D.a=1或a=﹣110.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为(
)A.0
B.-1
C.1
D.2二、填空题(每小题3分,共24分)11.若抛物线与轴没有交点,则的取值范围是__________.12.点向左平移两个单位后恰好位于双曲线上,则__________.13.从0,1,2,3,4中任取两个不同的数,其乘积为0的概率是___________.14.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.15.已知是一元二次方程的一个解,则的值是__________.16.抛物线y=3(x﹣2)2+5的顶点坐标是_____.17.__________.18.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.三、解答题(共66分)19.(10分)在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE≌ΔCAD.(2)若CE=CP,求证∠CPD=∠PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.20.(6分)在平面直角坐标系中,己知,.点从点开始沿边向点以的速度移动;点从点开始沿边内点以的速度移动.如果、同时出发,用表示移动的时间.(1)用含的代数式表示:线段_______;______;(2)当为何值时,四边形的面积为.(3)当与相似时,求出的值.21.(6分)如图所示,某学校有一边长为20米的正方形区域(四周阴影是四个全等的矩形,记为区域甲;中心区是正方形,记为区域乙).区域甲建设成休闲区,区域乙建成展示区,已知甲、乙两个区域的建设费用如下表:区域甲乙价格(百元米2)65设矩形的较短边的长为米,正方形区域建设总费用为百元.(1)的长为米(用含的代数式表示);(2)求关于的函数解析式;(3)当中心区的边长要求不低于8米且不超过12米时,预备建设资金220000元够用吗?请利用函数的增减性来说明理由.22.(8分)观察下列各式:﹣1×=﹣1+,﹣=﹣,﹣=﹣(1)猜想:﹣×=(写成和的形式)(2)你发现的规律是:﹣×=;(n为正整数)(3)用规律计算:(﹣1×)+(﹣)+(﹣)+…+(﹣×)+(﹣×).23.(8分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上一点,且BD=BA,求tan∠ADC的值.24.(8分)抛物线上部分点的横坐标,纵坐标的对应值如下表:-3-2-1010430(1)把表格填写完整;(2)根据上表填空:①抛物线与轴的交点坐标是________和__________;②在对称轴右侧,随增大而_______________;③当时,则的取值范围是_________________;(3)请直接写出抛物线的解析式.25.(10分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.26.(10分)计算:2cos30°﹣2sin45°+3tan60°+|1﹣|.
参考答案一、选择题(每小题3分,共30分)1、C【解析】直接把x=1代入进而得出2a+b=5,再把x=2代入ax2+bx﹣3,即可求出答案.【详解】∵当x=1时,代数式2ax2+bx的值为5,∴2a+b=5,∴当x=2时,代数式ax2+bx﹣3=4a+2b﹣3=2(2a+b)﹣3=2×5﹣3=1.故选:C.【点睛】本题主要考查求代数式的值,整体思想方法的应用,是解题的关键.2、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3、D【分析】根据方程的系数结合根的判别式,即可得出△>0,由此即可得出原方程有两个不相等的实数根.【详解】解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.【点睛】本题考查的知识点是根据一元二次方程根的判别式来判断方程的解的情况,熟记公式是解此题的关键.4、B【分析】在通往图书馆的路口有3条路,一次只能选一条路,则答案可解.【详解】在通往图书馆的路口有3条路,一次只能选一条路,她能一次选对路的概率是故选:B.【点睛】本题主要考查随机事件的概念,掌握随机事件概率的求法是解题的关键.5、C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.6、B【分析】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=OA,进而推出△AOD是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.【详解】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD.∵AB∥CD,∴EF⊥CD.∵分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等边三角形.∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四边形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四边形ABCD的面积是16.故选B.【点睛】本题考查了垂径定理,圆周角定理,矩形的判定和性质,正确的作出辅助线是解答本题的关键.7、B【解析】试题解析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项A、C、D正确,选项B错误.故选B.点睛:若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.8、B【分析】连接OC,求出∠COD和∠D,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.【详解】连接OC,
∵AO=CO,∠CAB=30°,
∴∠COD=2∠CAB=60°,
∵DC切⊙O于C,
∴OC⊥CD,
∴∠OCD=90°,
∴∠D=90°-∠COD=90°-60°=30°,
在Rt△OCD中,∠OCD=90°,∠D=30°,OC=4,∴,∴阴影部分的面积是:故选:B.【点睛】本题考查了扇形的面积,三角形的面积的应用,还考查了等腰三角形性质,三角形的内角和定理,切线的性质,解此题的关键是求出扇形和三角形的面积.9、C【解析】由图象得,此二次函数过原点(0,0),
把点(0,0)代入函数解析式得a2-1=0,解得a=±1;
又因为此二次函数的开口向上,所以a>0;
所以a=1.
故选C.10、A【解析】试题分析:因为对称轴x=1且经过点P(3,1)所以抛物线与x轴的另一个交点是(-1,1)代入抛物线解析式y=ax2+bx+c中,得a-b+c=1.故选A.考点:二次函数的图象.二、填空题(每小题3分,共24分)11、;【分析】利用根的判别式△<0列不等式求解即可.【详解】解:∵抛物线与轴没有交点,∴,即,解得:;故答案为:.【点睛】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.12、【分析】首先求出点P平移后的坐标,然后代入双曲线即可得解.【详解】点向左平移两个单位后的坐标为,代入双曲线,得∴故答案为-1.【点睛】此题主要考查坐标的平移以及双曲线的性质,熟练掌握,即可解题.13、【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与其乘积等于0的情况,再利用概率公式即可求得答案;【详解】解:画表格得:共由20种等可能性结果,其中乘积为0有8种,故乘积为0的概率为,故答案为:.【点睛】本题主要考查了列表法与树状图法,掌握列表法与树状图法是解题的关键.14、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.【详解】∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴∴点C的坐标为(6,2),∵点O的对应点C恰好落在反比例函数y=的图象上,
∴k=2,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.15、4【分析】把x=-2代入x2+mx+4=0可得关于m的一元一次方程,解方程即可求出m的值.【详解】∵是一元二次方程的一个解,∴4-2m+4=0,解得:m=4,故答案为:4【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16、(2,5).【解析】试题分析:由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为(2,5).考点:二次函数的性质.17、【分析】直接代入特殊角的三角函数值进行计算即可.【详解】.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.18、【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】由图可知,黑色方砖6块,共有16块方砖,
∴黑色方砖在整个地板中所占的比值,
∴小球最终停留在黑色区域的概率是,故答案为:.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为△ABC是等边三角形,所以AB=AC,∠BAE=∠ACD=60°,又AE=CD,即可证明ΔABE≌ΔCAD;(2)设则由等边对等角可得可得以及,故;(3)可证可得,故由于可得,根据黄金分割点可证点是的黄金分割点;【详解】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD=60°,在ΔABE与ΔCDA中,AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△AEB≌△CDA;(2)由(1)知,则,设,则,∵,∴,∴,又,∴;(3)在和中,,,∴,∴,∴,又,∴,∴点是的黄金分割点;【点睛】本题主要考查了等边三角形的性质,全等三角形的判定与性质,掌握等边三角形的性质,全等三角形的判定与性质是解题的关键.20、(1)2t,(5﹣t);(2)t=2或3;(3)t或1.【分析】(1)根据路程=速度×时间可求解;(2)根据S四边形PABQ=S△ABO﹣S△PQO列出方程求解;(3)分或两种情形列出方程即可解决问题.【详解】(1)OP=2tcm,OQ=(5﹣t)cm.故答案为:2t,(5﹣t).(2)∵S四边形PABQ=S△ABO﹣S△PQO,∴1910×52t×(5﹣t),解得:t=2或3,∴当t=2或3时,四边形PABQ的面积为19cm2.(3)∵△POQ与△AOB相似,∠POQ=∠AOB=90°,∴或.①当,则,∴t,②当时,则,∴t=1.综上所述:当t或1时,△POQ与△AOB相似.【点睛】本题是相似综合题,考查相似三角形的判定和性质、坐标与图形的性质、三角形的面积等知识,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1);(2)y=;(3)预备建设资金220000元不够用,见解析【分析】(1)根据矩形和正方形的性质解答即可;
(2)利用矩形的面积公式和正方形的面积公式解答即可;
(3)利用二次函数的性质和最值解答即可.【详解】解:(1)设矩形的较短边的长为米,,根据图形特点.(2)由题意知:化简得:(百元)(3)由题知:,解得,当x=4时,,当x=6时,,将函数解析式变形:,当时,y随x的增加而减少,所以(百元),而,预备建设资金220000元不够用.【点睛】此题主要考查了二次函数的应用以及配方法求最值和正方形的性质等知识,正确得出各部分的边长是解题关键.22、(1)﹣;(2)﹣;(3)﹣.【分析】(1)根据所给式子进行求解即可;(2)根据已知式子可得到;(3)分别算出括号里的式子然后相加即可;【详解】解:(1)由所给的已知发现乘积的等于和,∴,故答案为;(2),故答案为;(3),,.【点睛】本题主要考查了找规律数字运算,准确计算是解题的关键.23、2﹣.【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===.【点睛】本题考查求正切值,熟记正切的定义,解出直角三角形的边长是解题的关键.24、(1)2;(2)①抛物线与轴的交点坐标是和;②随增大而减小;③的取值范围是;(2).【分析】(1)利用表中对应值的特征和抛物线的对称性得到抛物线的对称轴为直线x=-1,则x=0和x=-2时,y的值相等,都为2;
(2)①利用表中y=0时x的值可得到抛物线与x轴的交点坐标;
②设交点式y=a(x+2)(x-1),再把(0,2)代入求出a得到抛物线解析式为y=-x2-2x+2,则可判断抛物线的顶点坐标为(-1,1),抛物线开口向下,然后根据二次函数的性质解决问题;③由于x=-2时,y=2;当x=2时,y=-5,结合二次函数的性质可确定y的取值范围;
(2)由(2)得抛物线解析式.【详解】解:(1)∵x=-2,y=0;x=1,y=0,
∴抛物线的对称轴为直线x=-1,
∴x=0和x=-2时,y=2;故答案是:2;
(2)①∵x=-2,y=0;x=1,y=0,∴抛物线与x轴的交点坐标是(-2,0)和(1,0);故答案是:(-2,0)和(1,0);
②设抛物线解析式为y=a(x+2)(x-1),
把(0,2)代入得2=-2a,解得a=-1,
∴抛物线解析式为y=-(x+2)(x-1),即y=-x2-2x+2,
抛物线的顶点坐标为(-1,1),抛物线开口向下,
∴在对称轴右侧,y随x增大而减小;故答案是:减小;
③当x=-2时,y=2;当x=2时,y=-1-1+2=-5,当x=-1,y有最大值为1,
∴当-2<x<2时,则y的取值范围是-5<y≤1.故答案是:-5<y≤1;
(2)由(2)得抛物线解析式为y=-x2-2x+2,
故答案是:y=-x2-2x+2.【点睛】本题考查了抛物线解析式的求法及与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点问题转化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行新入行客户经理工作总结
- 实习生工作总结15篇
- 软程序员辞职报告汇编八篇
- 教师师德工作计划范文
- 买卖合同范文集锦9篇
- 新生必bei-大学生存法则(重庆工商职业学院)知到智慧树答案
- 冀教版三年级上册 lesson 14 my body
- 《战略管理会计 》课件
- 《稿继续教育》课件
- 大班欢乐颂教案反思4篇
- 高性能计算云(HPC Clound)服务白皮书 2022
- 青岛科技大学互换性与技术测量期末复习题
- 高级教师职称面试讲课答辩题目及答案(分五类共60题)
- 宣传品制作售后服务
- 《皇帝的新装》比赛优质课一等奖课件
- LED洗墙灯CREE管工艺技术文件
- 认知觉醒:开启自我改变的原动力
- Python语言与经济大数据分析知到章节答案智慧树2023年上海财经大学
- 《九加几》的观评课
- 护理查房慢性乙型病毒性肝炎护理查房
- 在实践中认识针刺麻醉原理
评论
0/150
提交评论