2022年嘉兴市重点中学数学九年级第一学期期末学业水平测试试题含解析_第1页
2022年嘉兴市重点中学数学九年级第一学期期末学业水平测试试题含解析_第2页
2022年嘉兴市重点中学数学九年级第一学期期末学业水平测试试题含解析_第3页
2022年嘉兴市重点中学数学九年级第一学期期末学业水平测试试题含解析_第4页
2022年嘉兴市重点中学数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.反比例函数的图象经过点,,当时,的取值范围是()A. B. C. D.2.已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.3.如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为()A.﹣4 B.﹣3 C.﹣2 D.﹣14.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是()A.①② B.①③ C.②③ D.③④5.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米6.如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是()A.3 B.4 C.5 D.67.若关于的方程有两个相等的根,则的值为()A.10 B.10或14 C.-10或14 D.10或-148.下列汽车标志图片中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.如图,在△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,下列说法正确的是()A.点O是△ABC的内切圆的圆心B.CE⊥ABC.△ABC的内切圆经过D,E两点D.AO=CO10.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A. B. C.- D.二、填空题(每小题3分,共24分)11.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为_____m.12.已知,.且,设,则的取值范围是______.13.A、B为⊙O上两点,C为⊙O上一点(与A、B不重合),若∠ACB=100°,则∠AOB的度数为____°.14.已知实数x,y满足,则x+y的最大值为_______.15.如图,若△ADE∽△ACB,且=,DE=10,则BC=________16.如图,在中,,,,用含和的代数式表示的值为:_________.17.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为__________.18.方程的根是_____.三、解答题(共66分)19.(10分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.20.(6分)已知某二次函数图象上部分点的横坐标、纵坐标的对应值如下表.求此函数表达式.21.(6分)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸棋的次数n1002003005008001000摸到黑棋的次数m245176124201250摸到黑棋的频率(精确到0.001)0.2400.2550.2530.2480.2510.250(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由22.(8分)如图,在△ABC中,∠ACB=90º,∠ABC=45º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.(1)如图①,求证:EF=AE+CF.(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.23.(8分)如图,点D、O在△ABC的边AC上,以CD为直径的⊙O与边AB相切于点E,连结DE、OB,且DE∥OB.(1)求证:BC是⊙O的切线.(2)设OB与⊙O交于点F,连结EF,若AD=OD,DE=4,求弦EF的长.24.(8分)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元.在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?25.(10分)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE.(1)求证:△ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan∠ACD的值.26.(10分)(1)已知如图1,在中,,,点在内部,点在外部,满足,且.求证:.(2)已知如图2,在等边内有一点,满足,,,求的度数.

参考答案一、选择题(每小题3分,共30分)1、B【解析】由图像经过A(2,3)可求出k的值,根据反比例函数的性质可得时,的取值范围.【详解】∵比例函数的图象经过点,∴-3=,解得:k=-6,反比例函数的解析式为:y=-,∵k=-6<0,∴当时,y随x的增大而增大,∵x=1时,y=-6,x=3时,y=-2,∴y的取值范围是:-6<y<-2,故选B.【点睛】本题考查反比例函数的性质,k>0时,图像在一、三象限,在各象限y随x的增大而减小;k<0时,图像在二、四象限,在各象限y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.2、A【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a,b的符号确定一次函数图象所经过的象限.【详解】解:若反比例函数经过第一、三象限,则.所以.则一次函数的图象应该经过第一、二、三象限;若反比例函数经过第二、四象限,则a<1.所以b>1.则一次函数的图象应该经过第二、三、四象限.故选项A正确;故选A.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.3、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等可求解.【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(-1,0).故横坐标为-1,故选D考点:二次函数的性质4、A【分析】利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【详解】解:由图,根据勾股定理,可得出①图中阴影三角形的边长分别为:;②图中阴影三角形的边长分别为:;③图中阴影三角形的边长分别为:;④图中阴影三角形的边长分别为:;可以得出①②两个阴影三角形的边长,所以图①②两个阴影三角形相似;故答案为:A.【点睛】本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确.5、C【解析】解:∵sin∠C=,∴AB=AC•sin∠C=200sin20°.故选C.6、B【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【详解】∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=1.故选:B.【点睛】此题主要考查根据三角形中线性质求解面积,熟练掌握,即可解题.7、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:∵关于的方程有两个相等的根,∴,即有,解得10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程有两个相等的两个实数根是解答此题的关键.8、C【解析】根据轴对称图形和中心对称图形的性质进行判断即可.【详解】A.既不是轴对称图形,也不是中心对称图形,错误;B.是轴对称图形,不是中心对称图形,错误;C.既是轴对称图形,也是中心对称图形,正确;D.是轴对称图形,不是中心对称图形,错误;故答案为:C.【点睛】本题考查了轴对称图形和中心对称图形的问题,掌握轴对称图形和中心对称图形的性质是解题的关键.9、A【分析】由∠BAC的平分线AD与∠ACB的平分线CE交于点O,得出点O是△ABC的内心即可.【详解】解:∵△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,∴点O是△ABC的内切圆的圆心;故选:A.【点睛】本题主要考察三角形的内切圆与内心,解题关键是熟练掌握三角形的内切圆性质.10、A【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.二、填空题(每小题3分,共24分)11、20m【详解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案为20m.12、【分析】先根据已知得出n=1-m,将其代入y中,得出y关于m的二次函数即可得出y的范围【详解】解:∵∴n=1-m,∴∵,∴,∴当m=时,y有最小值,当m=0时,y=1当m=1时,y=1∴故答案为:【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键13、160°【分析】根据圆周角定理,由∠ACB=100°,得到它所对的圆心角∠α=2∠ACB=200°,用360°-200°即可得到圆心角∠AOB.【详解】如图,∵∠α=2∠ACB,

而∠ACB=100°,

∴∠α=200°,

∴∠AOB=360°-200°=160°.

故答案为:160°.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.14、4【解析】用含x的代数式表示y,计算x+y并进行配方即可.【详解】∵∴∴∴当x=-1时,x+y有最大值为4故答案为4【点睛】本题考查的是求代数式的最大值,解题的关键是配方法的应用.15、15【分析】根据相似三角形的性质,列出比例式即可解决问题.【详解】解:∵△ADE∽△ACB,∴,DE=10,∴,∴.【点睛】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.16、【分析】分别在Rt△ABC和Rt△ADC中用AC和的三角函数表示出AB和AD,进一步即可求出结果.【详解】解:在Rt△ABC中,∵,∴,在Rt△ADC中,∵,∴,∴.故答案为:.【点睛】本题考查了三角函数的知识,属于常考题型,熟练掌握正弦的定义是解题的关键.17、【分析】设一双为红色,另一双为绿色,画树状图得出总结果数和恰好两只手套凑成同一双的结果数,利用概率公式即可得答案.【详解】画树状图如下:∵共有6种可能情况,恰好两只手套凑成同一双的情况有2种,∴恰好两只手套凑成同一双的概率为,故答案为:【点睛】本题考查用列表法或树状图法求概率,熟练掌握概率公式是解题关键.18、0和-4.【分析】根据因式分解即可求解.【详解】解∴x1=0,x2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.三、解答题(共66分)19、(1)见解析(2)【分析】(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;(2)连接OM,由垂径定理和勾股定理进行计算即可.【详解】(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴MB=OB=1,OM==.∵∠DOF=60°,∴∠MOF=90°.∴MF=.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、直角三角形的性质、垂径定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.20、【分析】观察图表可知,此二次函数以x=1为轴对称,顶点为(1,4),判断适合套用顶点式y=a(x-h)2+k,得到,再将除顶点外的任意已知点代入,如点(-1,0),得a=-1.故所求函数表达式为【详解】解:观察图表可知,当x=-1时y=0,当x=3时y=0,∴对称轴为直线,顶点坐标为,∴设,∵当x=-1时y=0,∴,∴=-1,∴.【点睛】本题考查了用待定系数法求二次函数的解析式,这类问题首先应考虑能不能用简便方法即能不能用顶点式和交点式来解,实在不行用一般形式.此题能观察确定出对称轴和顶点的坐标是关键.21、(1)0.25;(2).【分析】大量重复试验下摸球的频率可以估计摸球的概率;画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解.【详解】(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.22、(1)见解析;(2)图②:EF=AE+CF图③:EF=AE-CF,见解析【分析】(1)连接OC,运用AAS证△AOE≌△OCF即可;(2)按(1)中的方法,连接OC,证明△AOE≌△OCF,即可得出结论【详解】(1)连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF(2)如图②,连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.23、(1)见解析;(2)1【分析】(1)连接OE,根据切线的性质得到OE⊥AB,根据平行线的性质得到∠BOC=∠EDO,∠BOE=∠DEO,根据全等三角形的性质得到∠OCB=∠OEB=90°,于是得到BC是⊙O的切线;(2)根据直角三角形的性质得到OD=DE=1,推出四边形DOFE是平行四边形,得到EF=OD=1.【详解】(1)证明:连接OE,∵以CD为直径的⊙O与边AB相切于点E,∴OE⊥AB,∵DE∥OB,∴∠BOC=∠EDO,∠BOE=∠DEO,∵OE=OD,∴∠EDO=∠DEO,∴∠BOC=∠BOE,∵OB=OB,OC=OE,∴△OCB≌△OEB(SAS),∴∠OCB=∠OEB=90°,∴BC是⊙O的切线;(2)解:∵∠AEO=90°,AD=OD,∴ED=AO=OD,∴OD=DE=1,∵DE∥OF,DE=OD=OF,∴四边形DOFE是平行四边形,∴EF=OD=1,∴弦EF的长为1.【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.24、4株【分析】根据已知假设每盆花苗增加株,则每盆花苗有株,得出平均单株盈利为元,由题意得求出即可。【详解】解:设每盆花苗增加株,则每盆花苗有株,平均单株盈利为:元,由题意得:.化简,整理,.解这个方程,得,,则,,每盆植入株数尽可能少,盆应植4株.答:每盆应植4株.【点睛】此题考查了一元二次方程的应用,根据每盆花苗株数平均单株盈利总盈利得出方程是解题关键.25、(1)证明见解析;(2)证明见解析;(3)tan∠ACD=2﹣.【分析】(1)根据BM为切线,BC平分∠ABM,求得∠ABC的度数,再由直径所对的圆周角为直角,即可求证;(2)根据三角形相似的判定定理证明三角形相似,再由相似三角形对应边成比例,即可求证;(3)由图得到∠ACD=∠ABD,根据各个角之间的关系求出∠AFD的度数,用AD表达出其它边的边长,再代入正切公式即可求得.【详解】(1)∵BM是以AB为直径的⊙O的切线,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直径∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如图,连接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DEDC∴OA2=DEDC=EODC(3)如图,连接BD,AD,DO,作∠BAF=∠DBA,交BD于点F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论