![2023学年福建省漳达志中学高三第一次调研测试数学试卷(含解析)_第1页](http://file4.renrendoc.com/view/e0f026eb098696799ddcb856710ab5af/e0f026eb098696799ddcb856710ab5af1.gif)
![2023学年福建省漳达志中学高三第一次调研测试数学试卷(含解析)_第2页](http://file4.renrendoc.com/view/e0f026eb098696799ddcb856710ab5af/e0f026eb098696799ddcb856710ab5af2.gif)
![2023学年福建省漳达志中学高三第一次调研测试数学试卷(含解析)_第3页](http://file4.renrendoc.com/view/e0f026eb098696799ddcb856710ab5af/e0f026eb098696799ddcb856710ab5af3.gif)
![2023学年福建省漳达志中学高三第一次调研测试数学试卷(含解析)_第4页](http://file4.renrendoc.com/view/e0f026eb098696799ddcb856710ab5af/e0f026eb098696799ddcb856710ab5af4.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A. B. C. D.2.设,则(
)A.10 B.11 C.12 D.133.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或54.若时,,则的取值范围为()A. B. C. D.5.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.06.已知函数是奇函数,则的值为()A.-10 B.-9 C.-7 D.17.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为()A. B. C. D.8.已知边长为4的菱形,,为的中点,为平面内一点,若,则()A.16 B.14 C.12 D.89.函数的大致图象为()A. B.C. D.10.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.11.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.812.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满足,则的最小值是______________.14.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:①为的重心;②;③当时,平面;④当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是________________.15.某市高三理科学生有名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式取份试卷进行分析,则应从分以上的试卷中抽取的份数为__________.16.若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(18.(12分)在平面直角坐标系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.19.(12分)已知非零实数满足.(1)求证:;(2)是否存在实数,使得恒成立?若存在,求出实数的取值范围;若不存在,请说明理由20.(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,,,为的中点.(1)求证:平面;(2)求二面角的大小.21.(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值551484031097298122.(10分)在锐角中,,,分别是角,,所对的边,的面积,且满足,则的取值范围是()A. B. C. D.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值.【题目详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方体中平面,从而有,∴,∴在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,,当且仅当共线时取等号,∴所求最小值为.故选:C.【答案点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值.2、B【答案解析】
根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【题目详解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故选:B.【答案点睛】本题主要考查了分段函数中求函数的值,属于基础题.3、B【答案解析】
根据渐近线方程求得,再利用双曲线定义即可求得.【题目详解】由于,所以,又且,故选:B.【答案点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.4、D【答案解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.【题目详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,,又在单调递增,,的取值范围为.故选:D【答案点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.5、B【答案解析】
先求出,再利用投影公式求解即可.【题目详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【答案点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.6、B【答案解析】
根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【题目详解】因为函数是奇函数,所以,.故选:B【答案点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.7、B【答案解析】
列出循环的每一步,由此可得出输出的值.【题目详解】由题意可得:输入,,,;第一次循环,,,,继续循环;第二次循环,,,,继续循环;第三次循环,,,,跳出循环;输出.故选:B.【答案点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题.8、B【答案解析】
取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【题目详解】取中点,连接,,,即.,,,则.故选:.【答案点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.9、A【答案解析】
利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【题目详解】,排除掉C,D;,,,.故选:A.【答案点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.10、D【答案解析】
根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【题目详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【答案点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.11、A【答案解析】
由垂心的性质,得到,可转化,又即得解.【题目详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【答案点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、A【答案解析】
首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【题目详解】由于为上的减函数,则有,可得,所以当最小时,,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点.画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为.故选:A.【答案点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
先画出不等式组对应的可行域,再利用数形结合分析解答得解.【题目详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-3x+z,它表示斜率为-3,纵截距为z的直线系,平移直线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【答案点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.14、①②③【答案解析】
①点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以①是正确的;②取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以②正确;③若设,则由可得,然后对应边成比例,可解,所以③正确;④由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平面的距离最大,此时为棱长为的正四面体,其外接球半径,则球,所以④错误.【题目详解】因为,连接,则有平面平面为正三角形,所以为正三角形的中心,也是的重心,所以①正确;由平面,可知平面平面,记,由,可得平面平面,则,所以②正确;若平面,则,设由得,易得,由,则,由得,,解得,所以③正确;当与重合时,最大,为棱长为的正四面体,其外接球半径,则球,所以④错误.故答案为:①②③【答案点睛】此题考查立体几何中的垂直、平行关系,求几何体的体积,考查空间想象能力和推理能力,属于难题.15、【答案解析】
由题意结合正态分布曲线可得分以上的概率,乘以可得.【题目详解】解:,所以应从分以上的试卷中抽取份.故答案为:.【答案点睛】本题考查正态分布曲线,属于基础题.16、13【答案解析】
由导函数的应用得:设,,所以,,又,所以,即,由二项式定理:令得:,再由,求出,从而得到的值;【题目详解】解:设,,所以,,又,所以,即,取得:,又,所以,故,故答案为:13【答案点睛】本题考查了导函数的应用、二项式定理,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)π;(II)-【答案解析】
(I)化简得到fx(II)f(α2)=2sin【题目详解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【答案点睛】本题考查了三角函数的周期,三角恒等变换,意在考查学生的计算能力和综合应用能力.18、(1)(2).【答案解析】
(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行的坐标关系解得.【题目详解】(1)由题,向量,,则.(2),.,,整理得,化简得,即,,,,即.【答案点睛】本题考查平面向量的坐标运算,以及向量平行,是常考题型.19、(1)见解析(2)存在,【答案解析】
(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【题目详解】又即即①当时,即恒成立(当且仅当时取等号),故②当时恒成立(当且仅当时取等号),故综上,【答案点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.20、(1)证明见解析(2)【答案解析】
(1)连接,交与,连接,由,得出结论;(2)以为原点,,,分别为,,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.【题目详解】(1)连接,交与,连接,在中,,又平面,平面,所以平面;(2)由平面平面,,为平面与平面的交线,故平面,故,又,所以平面,以为原点,,,分别为,,轴建立空间直角坐标系,,,,,,,设平面的法向量为,,,由,得,平面的法向量为,由,故二面角的大小为.【答案点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1),;(2)148万亿元.【答案解析】
(1)由散点图知更适宜,对两边取自然对数得,令,,,则,再利用线性回归方程的计算公式计算即可;(2)将代入所求的回归方程中计算即可.【题目详解】(1)根据数据及图表可以判断,更适宜作为全国GDP总量关于的回归方程.对两边取自然对数得,令,,,得.因为,所以,所以关于的线性回归方程为,所以关于的回归
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 21《古诗三首》说课稿-2024-2025学年语文四年级上册统编版001
- 6《摸一摸》说课稿-2024-2025学年科学一年级上册青岛版
- 2024-2025学年高中生物 第3章 植物的激素调节 第1节 植物生长素的发现说课稿 新人教版必修3001
- 2024年五年级英语下册 Module 7 Unit 2 I will be home at seven oclock说课稿 外研版(三起)
- 2025住宅装修物业管理合同(合同范本)
- 8《池子与河流》(说课稿)-2023-2024学年统编版语文三年级下册
- 2025锅炉拆除安全施工合同
- 2025有关电梯广告的合同范本
- Unit 6 Disaster and Hope Understanding ideas 说课稿-2023-2024学年外研版高中英语(2019)必修第三册
- 代理制 合同范本
- 职业卫生培训课件
- 柴油垫资合同模板
- GB/T 44489-2024高级辅助驾驶地图审查要求
- 2024-2030年中国体外除颤器行业市场发展趋势与前景展望战略分析报告
- 2024-2030年中国人力资源行业市场发展前瞻及投资战略研究报告
- 2024-2030年中国桦树汁行业市场发展趋势与前景展望战略分析报告
- 全册(教案)外研版(一起)英语四年级下册
- 偏差行为、卓越一生3.0版
- 国网浙江电科院:2024浙江工商业储能政策及收益分析报告
- 中国儿童幽门螺杆菌感染诊治专家共识2022
- JJG 4-2015钢卷尺行业标准
评论
0/150
提交评论