江苏省苏州新区实验中学2023学年高三最后一卷数学试卷(含解析)_第1页
江苏省苏州新区实验中学2023学年高三最后一卷数学试卷(含解析)_第2页
江苏省苏州新区实验中学2023学年高三最后一卷数学试卷(含解析)_第3页
江苏省苏州新区实验中学2023学年高三最后一卷数学试卷(含解析)_第4页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“且”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件2.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.23.在满足,的实数对中,使得成立的正整数的最大值为()A.5 B.6 C.7 D.94.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.5.设向量,满足,,,则的取值范围是A. B.C. D.6.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.7.抛物线y2=ax(a>0)的准线与双曲线C:x28A.8 B.6 C.4 D.28.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.9.已知全集,集合,,则()A. B. C. D.10.已知函数,若,则的取值范围是()A. B. C. D.11.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.12.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,,则异面直线与所成角的余弦值为()A. B. C. D.14.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______.15.函数的单调增区间为__________.16.已知,则_____。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.18.(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.19.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.20.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.21.(12分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将①,②,③中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.22.(10分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】

画出“,,,所表示的平面区域,即可进行判断.【题目详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【答案点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.2、B【答案解析】

画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【题目详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.【答案点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.3、A【答案解析】

由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【题目详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【答案点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.4、C【答案解析】

根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【题目详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【答案点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.5、B【答案解析】

由模长公式求解即可.【题目详解】,当时取等号,所以本题答案为B.【答案点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.6、C【答案解析】

可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【题目详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C【答案点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.7、A【答案解析】

求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.【题目详解】抛物线y2=ax(a>0)的准线为x=-a4,双曲线C:x28-y24【答案点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.8、C【答案解析】

画出不等式表示的平面区域,计算面积即可.【题目详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【答案点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.9、B【答案解析】

直接利用集合的基本运算求解即可.【题目详解】解:全集,集合,,则,故选:.【答案点睛】本题考查集合的基本运算,属于基础题.10、B【答案解析】

对分类讨论,代入解析式求出,解不等式,即可求解.【题目详解】函数,由得或解得.故选:B.【答案点睛】本题考查利用分段函数性质解不等式,属于基础题.11、B【答案解析】

计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【题目详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.【答案点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.12、D【答案解析】

根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【题目详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【答案点睛】本题主要考查数列递推公式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、C【答案解析】

根据确定是异面直线与所成的角,利用余弦定理计算得到答案.【题目详解】由题意可得.因为,所以是异面直线与所成的角,记为,故.故选:.【答案点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力和计算能力.14、或【答案解析】

设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【题目详解】抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以,因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或【答案点睛】本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.15、【答案解析】

先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【题目详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【答案点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.16、【答案解析】

由已知求,再利用和角正切公式,求得,【题目详解】因为所以cos因此.【答案点睛】本题考查了同角三角函数基本关系式与和角的正切公式。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)为定值.过程见解析.【答案解析】分析:(1)焦距说明,用点差法可得=.这样可解得,得椭圆方程;(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.详解:(1)由题意可知,设,代入椭圆可得:,两式相减并整理可得,,即.又因为,,代入上式可得,.又,所以,故椭圆的方程为.(2)由题意可知,,当为长轴时,为短半轴,此时;否则,可设直线的方程为,联立,消可得,,则有:,所以设直线方程为,联立,根据对称性,不妨得,所以.故,综上所述,为定值.点睛:设直线与椭圆相交于两点,的中点为,则有,证明方法是点差法:即把点坐标代入椭圆方程得,,两式相减,结合斜率公式可得.18、(1)(2)【答案解析】

(1)因为,所以,由余弦定理得,化简得,可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号).由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.19、(Ⅰ)见证明;(Ⅱ)【答案解析】

(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证,,两两垂直,以,,分别为,,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案.【题目详解】解:(Ⅰ)取的中点为,连结.由是三棱台得,平面平面,从而.∵,∴,∴四边形为平行四边形,∴.∵,为的中点,∴,∴.∵平面平面,且交线为,平面,∴平面,而平面,∴.(Ⅱ)连结.由是正三角形,且为中点,则.由(Ⅰ)知,平面,,∴,,∴,,两两垂直.以,,分别为,,轴,建立如图所示的空间直角坐标系.设,则,,,,∴,,.设平面的一个法向量为.由可得,.令,则,,∴.设与平面所成角为,则.【答案点睛】本题考查了空间几何中,面面垂直的性质,线线垂直的证明,及线面角的求法,考查了学生的逻辑推理能力与计算求解能力,属于中档题.20、(1)(2)不存在;详见解析【答案解析】

(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【题目详解】(1);(2),若,同号,,不成立;或,异号,,不成立;故不存在实数,,使得,.【答案点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.21、(1);(2).【答案解析】

若补充②③根据已知可得平面,从而有,结合,可得平面,故有,而,得到,②③成立与①②相同,①③成立,可得,所以任意补充两个条件,结果都一样,以①②作为条件分析;(1)设,可得,进而求出梯形的面积,可求出,即可求出结论;(2),以为坐标原点,建立空间坐标系,求出坐标,由(1)得为平面的法向量,根据空间向量的线面角公式即可求解.【题目详解】第一种情况:若将①,②作为已知条件,解答如下:(1)设平面为平面.∵,∴平面,而平面平面,∴,又为中点.设,则.在三角形中,,由知平面,∴,∴梯形的面积,,,平面,,,∴,故,.(2)如图,分别以所在直线为轴建立空间直角坐标系,设,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论