2022-2023学年四川省遂宁市射洪中学数学八上期末经典模拟试题含解析_第1页
2022-2023学年四川省遂宁市射洪中学数学八上期末经典模拟试题含解析_第2页
2022-2023学年四川省遂宁市射洪中学数学八上期末经典模拟试题含解析_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图比较大小,已知OA=OB,数轴点A所表示的数为a()﹣.A.> B.< C.≥ D.=2.估计的运算结果应在()A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间3.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1 B.l2 C.l3 D.l44.下列实数中,无理数是()A. B. C. D.5.如果把分式中的、同时扩大为原来的2倍,那么得到的分式的值()A.不变 B.缩小到原来的C.扩大为原来的2倍 D.扩大为原来的4倍6.下列四个数中,是无理数的有()A. B. C. D.7.如图,以两条直线l1,l2的交点坐标为解的方程组是()A. B. C. D.8.下列命题是真命题的是()A.相等的角是对顶角 B.一个角的补角是钝角C.如果ab=0,那么a+b=0 D.如果ab=0,那么a=0或b=09.下列四张扑克牌中,左旋转后还是和原来一样的是()A. B. C. D.10.点都在直线上,则与的大小关系是()A. B. C. D.不能比较11.如图,一张长方形纸片的长,宽,点在边上,点在边上,将四边形沿着折叠后,点落在边的中点处,则等于()

A. B. C. D.12.下列多项式中可以用平方差公式进行因式分解的有()①;②;③;④;⑤;⑥A.2个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.14.分解因式:x2y﹣4xy+4y=_____.15.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是_____.16.当________时,分式无意义.17.在△ABC中,将∠B、∠C按如图所示方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=82°,则∠MGE=_____°.18.把多项式进行分解因式,结果为________________.三、解答题(共78分)19.(8分)(1)在等边三角形中,①如图①,,分别是边,上的点,且,与交于点,则的度数是___________度;②如图②,,分别是边,延长线上的点,且,与的延长线交于点,此时的度数是____________度;(2)如图③,在中,,是锐角,点是边的垂直平分线与的交点,点,分别在,的延长线上,且,与的延长线交于点,若,求的大小(用含法的代数式表示).20.(8分)直线与轴相交于点,与轴相交于点.(1)求直线与坐标轴围成的面积;(2)在轴上一动点,使是等腰三角形;请直接写出所有点的坐标,并求出如图所示时点的坐标;(3)直线与直线相交于点,与轴相交于点;点是直线上一点,若的面积是的面积的两倍,求点的坐标.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(10分)两个一次函数l1、l2的图象如图:(1)分别求出l1、l2两条直线的函数关系式;(2)求出两直线与y轴围成的△ABP的面积;(3)观察图象:请直接写出当x满足什么条件时,l1的图象在l2的下方.23.(10分)如图,点是上一点,交于点,,;求证:.24.(10分)甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求在乙车行驶过程中,当为何值时,两车相距20千米?25.(12分)如图,已知点B、F、C、E在一条直线上,BF=EC,AB∥ED,AB=DE.求证:∠A=∠D.26.如图,在平面直角坐标系中,点为坐标原点,已知三个定点坐标分别为,,.(1)画出关于轴对称的,点的对称点分别是点,则的坐标:(_________,_________),(_________,_________),(_________,_________);(2)画出点关于轴的对称点,连接,,,则的面积是___________.

参考答案一、选择题(每题4分,共48分)1、A【分析】由勾股定理求出OB=,即可确定A点表示的数为,比较和的大小即可求解.【详解】解:由勾股定理可求OB=,∵OA=OB,∴OA=,∴A点表示的数为,∵,故选:A.【点睛】本题主要考查勾股定理和实数的大小比较,掌握勾股定理和实数的大小比较方法是解题的关键.2、C【分析】先根据实数的混合运算化简,再估算的值即可.【详解】==.∵5<<6,∴7<<8故的运算结果应在7和8之间.故选:C.【点睛】本题考查了估算无理数的大小,其常见的思维方法:用有理数逼近无理数,求无理数的近似值.3、C【分析】根据轴对称图形的定义进行判断即可得到对称轴.【详解】解:观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,所以该图形的对称轴是直线l3,故选C.【点睛】本题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4、D【分析】根据无理数、有理数的定义即可判定选择项.【详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.【点睛】此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5、B【分析】根据分式的基本性质即可求出答案.【详解】解:;∴得到的分式的值缩小到原来的;故选:B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.6、B【解析】根据无理数的意义判断即可.【详解】A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意.故选:B.【点睛】本题考查了对无理数的意义的理解,无理数包括三方面的数:①含π的;②开方开不尽的根式;③一些有规律的数.7、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.8、D【分析】根据对顶角的性质、补角的概念、有理数的乘法法则判断即可.【详解】解:相等的角不一定是对顶角,A是假命题;钝角的补角不是钝角,B是假命题;如果ab=0,那么a=0或b=0,C是假命题,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、C【解析】根据中心对称图形的定义进行判断可得答案.【详解】解:根据中心对称图形的定义,左旋转后还是和原来一样的是只有C.故选C.【点睛】此题目要考查了中心对称图形的相关定义:一个图形绕着中心点旋转后能与自身重合,我们把这种图形叫做中心对称图形,这个中心点称为对称中心.10、A【分析】先根据直线的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【详解】解:∵直线中,-1<0,∴y随x的增大而减小.∵-4<1,

∴y1>y1.

故选:A.【点睛】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.11、D【分析】连接BE,根据折叠的性质证明△ABE≌△,得到BE=EG,根据点G是AD的中点,AD=4得到AE=2-EG=2-BE,再根据勾股定理即可求出BE得到EG.【详解】连接BE,由折叠得:,=90°,,∴△ABE≌△,∴BE=EG,∵点G是AD的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE,在Rt△ABE中,,∴,∴EG=,故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE,由此利用勾股定理解题.12、C【分析】根据平方差公式的结构特点,通过变形,然后得到答案.【详解】解:①,不符合平方差公式结构,故①错误;②,符合平方差公式结构,故②正确;③,符合平方差公式结构,故③正确;④,符合平方差公式结构,故④正确;⑤,符合平方差公式结构,故⑤正确;⑥,不符合平方差公式结构,故⑥错误;∴可以用平方差公式进行因式分解的有:②③④⑤,共4个;故选:C.【点睛】本题考查了平方差公式因式分解,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.二、填空题(每题4分,共24分)13、17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).14、y(x-2)2【分析】先提取公因式y,再根据完全平方公式分解即可得.【详解】原式==,故答案为.15、1【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【详解】解:如图,连接OA,作OE⊥AB于E,OF⊥AC于F.∵OB、OC分别平分∠ABC和∠ACB,∴OD=OE=OF,∴S△ABC=S△BOC+S△AOB+S△AOC===×22×3=1.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.16、=1【解析】分式的分母等于0时,分式无意义.【详解】解:当即时,分式无意义.故答案为:【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.17、1【分析】由折叠的性质可知:∠B=∠MGB,∠C=∠EGC,根据三角形的内角和为180°,可求出∠B+∠C的度数,进而得到∠MGB+∠EGC的度数,问题得解.【详解】解:∵线段MN、EF为折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=1°,∴∠B+∠C=180°﹣1°=98°,∴∠MGB+∠EGC=∠B+∠C=98°,∴∠MGE=180°﹣98=1°,故答案为:1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想得到∠MGB+∠EGC的度数.18、2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底.三、解答题(共78分)19、(1)60;(2)60;(3)【分析】(1)①只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点是边的垂直平分线与的交点,,,,,,,.【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.20、(1);(2)所有P点的坐标,点P的坐标;(3)或.【分析】(1)先求出OA,OB的长度,然后利用面积公式即可求解;(2)是等腰三角形,分三种情况讨论:若时;若时;若时,图中给出的情况是时,设,利用勾股定理即可求出x的值,从而可确定P的坐标;(3)先求出点C的坐标,然后根据面积之间的关系求出D的纵坐标,然后将纵坐标代入直线CD中即可求出横坐标.【详解】(1)当时,,,;当时,,,;∴的面积;(2)是等腰三角形,分三种情况讨论:若时,有,此时;若时,此时或;若时,设,则,由,得:∴此时;(3)由以及得,所以,∵的面积是的面积的两倍,∴点的纵坐标为或,把代入得,把代入得因此或.【点睛】本题主要考查一次函数与几何综合,数形结合及分情况讨论是解题的关键.21、(1)证明见解析;(2)1.【解析】试题分析:(1)根据△AEO和△CFO全等来进行说明;(2)连接OB,得出△BOF和△BOE全等,然后求出∠BAC的度数,根据∠BAC的正切值求出AB的长度.试题解析:(1)∵四边形ABCD是矩形,∴AB∥CD∴∠OAE=∠OCF∠OEA=∠OFC∵AE=CF∴△AEO≌△CFO∴OE=OF(2)连接BO∵OE=OFBE=BF∴BO⊥EF且∠EBO=∠FBO∴∠BOF=90°∵四边形ABCD是矩形∴∠BCF=90°∵∠BEF=2∠BAC∠BEF=∠BAC+∠EOA∴∠BAC=∠EOAAE=OE∵AE=CFOE=OF∴OF=CF又∵BF=BF∴Rt△BOF≌Rt△BCF∴∠OBF=∠CBF∴∠CBF=∠FBO=∠OBE∵∠ABC=90°∠OBE=30°∴∠BEO=10°∠BAC=30°∵tan∠BAC=∴tan30°=即∴AB=1.考点:三角形全等的证明、锐角三角函数的应用.22、⑴函数l1的解析式是y=2x-4,函数l2的解析式是y=x+2;⑵12;⑶当x<4时,l1的图象在l2的下方.【分析】(1)设直线l1的解析式是y=kx+b(k≠0),把点(2,0),(0,-4)分别代入函数解析式列出关于系数k、b的方程组,通过解方程组来求它们的值.同理有可求出直线l2的解析式.(2)联系两个解析式,通过解方程组可以求得交点P的坐标,然后利用三角形的面积公式进行解答即可.(3)根据图示直接写出答案.【详解】(1)设直线l1的解析式是y=kx+b(k≠0),把点(2,0),(0,-4)分别代入y=kx+b,得,解得k=2,b=-4∴直线l1的解析式是y=2x-4.同理,直线l2的解析式是y=x+2.(2)解方程解得:,故两条直线的交点P的坐标为(4,4).∴两直线与y轴围成的△ABP的面积是:.(3)根据图示知,当x<4时,l1的图象在l2的下方.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图像上点的坐标特征以及函数图像交代问题.解题时,一定要数形结合.23、见解析【分析】先根据得到,再证明△AED≌△CEF即可得证.【详解】证明:∵,∴,在△AED和△CEF中,

∵,∴△AED≌△CEF,∴.【点睛】本题考查三角形全等的证明,熟知三角形全等的判定方法是解题的关键.24、(1)乙车比甲车晚出发1小时;(2)乙车出发1.5小时后追上甲车;(3)在乙车行驶过程中,当t为1或2时,两车相距20千米.【分析】(1)从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论