广西钦州市2023年高三冲刺模拟数学试卷含解析_第1页
广西钦州市2023年高三冲刺模拟数学试卷含解析_第2页
广西钦州市2023年高三冲刺模拟数学试卷含解析_第3页
广西钦州市2023年高三冲刺模拟数学试卷含解析_第4页
广西钦州市2023年高三冲刺模拟数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图像大致为()A. B.C. D.2.已知集合,,若,则的最小值为()A.1 B.2 C.3 D.43.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件4.在中,角、、的对边分别为、、,若,,,则()A. B. C. D.5.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.6.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.7.若不等式对于一切恒成立,则的最小值是()A.0 B. C. D.8.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是A. B. C. D.9.若的内角满足,则的值为()A. B. C. D.10.已知满足,则的取值范围为()A. B. C. D.11.函数的部分图象如图所示,则的单调递增区间为()A. B.C. D.12.已知平面向量,满足,且,则与的夹角为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直角坐标系中起点为坐标原点的向量满足,且,,,存在,对于任意的实数,不等式,则实数的取值范围是______.14.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:①平面;②四点、、、可能共面;③若,则平面平面;④平面与平面可能垂直.其中正确的是__________.15.已知中,点是边的中点,的面积为,则线段的取值范围是__________.16.在数列中,,则数列的通项公式_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.18.(12分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.19.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,,求的最大值.20.(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.21.(12分)如图,在四棱锥中,平面ABCD平面PAD,,,,,E是PD的中点.证明:;设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值.22.(10分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.【点睛】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.2.B【解析】

解出,分别代入选项中的值进行验证.【详解】解:,.当时,,此时不成立.当时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.3.D【解析】

由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.4.B【解析】

利用两角差的正弦公式和边角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【详解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.5.D【解析】

将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题6.C【解析】

由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.7.C【解析】

试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题8.B【解析】该几何体是直三棱柱和半圆锥的组合体,其中三棱柱的高为2,底面是高和底边均为4的等腰三角形,圆锥的高为4,底面半径为2,则其体积为,.故选B点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9.A【解析】

由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.10.C【解析】

设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.11.D【解析】

由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:.【点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.12.C【解析】

根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由题意可设,,,由向量的坐标运算,以及恒成立思想可设,的最小值即为点,到直线的距离,求得,可得不大于.【详解】解:,且,可设,,,,可得,可得的终点均在直线上,由于为任意实数,可得时,的最小值即为点到直线的距离,可得,对于任意的实数,不等式,可得,故答案为:.【点睛】本题主要考查向量的模的求法,以及两点的距离的运用,考查直线方程的运用,以及点到直线的距离,考查运算能力,属于中档题.14.①③【解析】

连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.【详解】对于命题①,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,,即,平面,平面,平面,命题①正确;对于命题②,,平面,平面,平面,若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题②错误;对于命题③,连接、,设,则,在中,,,则为等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题③正确;对于命题④,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,显然与不垂直,命题④错误.故答案为:①③.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.15.【解析】

设,利用正弦定理,根据,得到①,再利用余弦定理得②,①②平方相加得:,转化为有解问题求解.【详解】设,所以,即①由余弦定理得,即②,①②平方相加得:,即,令,设,在上有解,所以,解得,即,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.16.【解析】

由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:∵,∴①,②,①﹣②得:,又∵,∴数列的奇数项为首项为1,公差为2的等差数列,∴当为奇数时,,当为偶数时,则为奇数,∴,∴数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1).(2)四边形OMDN的面积是定值,其定值为.【解析】

(1)根据三角形内切圆的性质证得,由此判断出点的轨迹为椭圆,并由此求得曲线的方程.(2)将直线的斜率分成不存在或存在两种情况,求出平行四边形的面积,两种情况下四边形的面积都为,由此证得四边形的面积为定值.【详解】(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以点C的轨迹为以点A和点B为焦点的椭圆(点不在轴上),所以c,a=2,b,所以曲线G的方程为,(2)因为,故四边形为平行四边形.当直线l的斜率不存在时,则四边形为为菱形,故直线MN的方程为x=﹣1或x=1,此时可求得四边形OMDN的面积为.当直线l的斜率存在时,设直线l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|点O到直线MN的距离d,由,得xD,yD,∵点D在曲线C上,所以将D点坐标代入椭圆方程得1+2k2=2m2,由题意四边形OMDN为平行四边形,∴OMDN的面积为S,由1+2k2=2m2得S,故四边形OMDN的面积是定值,其定值为.【点睛】本小题主要考查用定义法求轨迹方程,考查椭圆中四边形面积的计算,考查椭圆中的定值问题,考查运算求解能力,属于中档题.18.(1)(2)【解析】

(1)首先利用诱导公式及两角和的余弦公式得到,再由同角三角三角的基本关系得到,即可求出角;(2)由(1)知,是正三角形,设,由余弦定理可得:,则,得到,再利用辅助角公式化简,最后由正弦函数的性质求得最大值;【详解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,设,由余弦定理得:,,,所以当时有最大值【点睛】本题考查同角三角函数的基本关系,三角恒等变换公式的应用,三角形面积公式的应用,以及正弦函数的性质,属于中档题.19.(1)的极坐标方程为;的极坐标方程为:(2)【解析】

(1)根据,代入即可转化.(2)由:,可得,代入与的极坐标方程求出,从而可得,再利用二倍角公式、辅助角公式,借助三角函数的性质即可求解.【详解】(1):,,的极坐标方程为:,,的极坐标方程为:,(2):,则(为锐角),,,,当时取等号.【点睛】本题考查了极坐标与直角坐标的互化、二倍角公式、辅助角公式以及三角函数的性质,属于基础题.20.(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】

(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,,则,,写出三角形面积,求其平方导数的最值,则答案可求.【详解】解:(1)由题意,为等腰直角三角形,又,,恰好是该零件的盖,,则,由图甲知,,,则在图乙中,,,,又,平面,平面,;(2)由题意知,在等腰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论