下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年吉林省通化市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.二项式(x-2)7展开式中含x5的系数等于()A.-21B.21C.-84D.84
2.A.B.C.D.
3.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)
4.设l表示一条直线,α,β,γ表示三个不同的平面,下列命题正确的是()A.若l//α,α//β,则l//β
B.若l//α,l//β,则α//β
C.若α//β,β//γ,则α//γ
D.若α//β,β//γ,则α//γ
5.设a>b>0,c<0,则下列不等式中成立的是A.ac>bc
B.
C.
D.
6.同时掷两枚质地均匀的硬币,则至少有一枚出现正面的概率是()A.lB.3/4C.1/2D.1/4
7.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
8.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离
9.已知{<an}为等差数列,a3+a8=22,a6=7,则a5=()</aA.20B.25C.10D.15
10.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
二、填空题(10题)11.在△ABC中,C=60°,AB=,BC=,那么A=____.
12.
13.
14.
15.函数f(x)=+㏒2x(x∈[1,2])的值域是________.
16.某程序框图如下图所示,该程序运行后输出的a的最大值为______.
17.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.
18.二项式的展开式中常数项等于_____.
19.
20.
三、计算题(5题)21.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
22.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
23.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
24.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、证明题(5题)26.己知sin(θ+α)=sin(θ+β),求证:
27.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
28.△ABC的三边分别为a,b,c,为且,求证∠C=
29.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
30.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
五、简答题(5题)31.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
32.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
33.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
34.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
35.解关于x的不等式
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
39.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.D
2.C
3.C直线与圆的公共点.圆(x-a)2+y2=2的圆心C(a,0)到x-y+1=0
4.C
5.B
6.B独立事件的概率.同时掷两枚质地均匀的硬币,可能的结果:(正,正),(正,反),(反,正),(反,反)共4种结果,至少有一枚出现正面的结果有3种,所求的概率是3/4
7.D
8.B圆与圆的位置关系,两圆相交
9.D由等差数列的性质可得a3+a8=a5+a6,∴a5=22-7=15,
10.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
11.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.
12.-5或3
13.
14.-2i
15.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].
16.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.
17.2n-1
18.15,由二项展开式的通项可得,令12-3r=0,得r=4,所以常数项为。
19.
20.2/5
21.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
22.
23.
24.
25.
26.
27.
28.
29.
∴PD//平面ACE.
30.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
31.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
32.
33.
34.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
35.
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.
38.
39.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 永不凋零的花课程设计
- 桥梁支架施工课程设计
- 矿井火灾灌浆课程设计
- 销售预算课程设计体会
- 小学禁毒教育课程设计计划
- 教育机构中的宇宙知识课程设计与实践
- 二零二五版安置房项目后期维护管理合同3篇
- 2025年度蔬菜种植基地与农产品质量安全检测机构合作协议3篇
- 二零二五版房产抵押购销与房地产项目股权投资合同3篇
- 2024版不可撤销居间合同模板
- 2024年江苏省《辅警招聘考试必刷500题》考试题库带答案(达标题)
- 高中家长会 高三上学期期末家长会
- 深圳南山区2024-2025上学期小学四年级数学期末试卷
- 药店员工培训
- 环卫工节前安全培训
- 李四光《看看我们的地球》原文阅读
- 2024年全国“纪检监察”业务相关知识考试题库(附含答案)
- DB32T 2305-2013 内陆水域鱼类资源调查规范
- 《陋室铭》(过关检测)(原卷版)-2024年中考语文课内39篇文言文阅读
- 福建省福州市2023-2024学年高一上学期期末考试物理试卷 附答案
- 2024-2030年中国IT运营管理(ITOM)软件行业市场发展趋势与前景展望战略研究报告
评论
0/150
提交评论