版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列函数中,自变量x的取值范围是x≥3的是()A. B. C. D.2.如图,△ABC的两个外角的平分线相交于D,若∠B=50°,则∠ADC=(
)A.60° B.80° C.65° D.40°3.四个长宽分别为,的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为、的大长方形,则下列各式不能表示图中阴影部分的面积是()A. B. C. D.4.下列各式中为最简二次根式的是()A. B. C. D.5.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP,并廷长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④若AD=2dm,则点D到AB的距离是1dm⑤S△DAC:S△DAB=1:2A.2 B.3 C.4 D.56.小明想用一长方形的硬纸片折叠成一个无盖长方体收纳盒,硬纸片长为a+1,宽为a-1,如图,在硬纸片的四角剪裁出4个边长为1的正方形,沿着图中虚线折叠,这个收纳盒的体积是()A.a2-1 B.a2-2a C.a2-1 D.a2-4a+37.如图,中,平分,平分,经过点,且,若,的周长等于12,则的长为()A.7 B.6 C.5 D.48.甲乙两地铁路线长约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为千米/时,根据题意,可得方程()A. B.C. D.9.关于的不等式的解集是,则的取值范围是()A. B. C. D.10.如图,是的角平分线,,,垂足分别为点,连接,与交于点,下列说法不一定正确的是()A. B. C. D.11.已知点P(4,a+1)与点Q(-5,7-a)的连线平行于x轴,则a的值是(
)A.2 B.3 C.4 D.512.如图,在△ABC中,AC的垂直平分线交AC于点E,交BC于点D,△ABD的周长为16cm,AC为5cm,则△ABC的周长为()A.24cm B.21cm C.20cm D.无法确定二、填空题(每题4分,共24分)13.等腰三角形的腰长为,底边长为,则其底边上的高为_________.14.已知点在轴上,则的值为__________.15.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________16.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.17.若式子有意义,则x的取值范围是.18.已知2m=a,32n=b,则23m+10n=________.三、解答题(共78分)19.(8分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?20.(8分)如图1,定义:在四边形中,若,则把四边形叫做互补四边形.(1)如图2,分别延长互补四边形两边、交于点,求证:.(2)如图3,在等腰中,,、分别为、上的点,四边形是互补四边形,,证明:.21.(8分)如图,在平面直角坐标系中,正方形顶点为轴正半轴上一点,点在第一象限,点的坐标为,连接.动点在射线上(点不与点、点重合),点在线段的延长线上,连接、,,设的长为.(1)填空:线段的长=________,线段的长=________;(2)求的长,并用含的代数式表示.22.(10分)先化简:,然后从,,,四个数中选取一个你认为合适的数作为的值代入求值.23.(10分)(1)解方程:;(2)解方程:.24.(10分)如图,在△ABC中,AB=10,AC=8,BC=6,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________.
25.(12分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.26.某客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.(kg)…253545…(元)…357…(1)求关于的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费(元)时,可携带行李的质量(kg)的取值范围.
参考答案一、选择题(每题4分,共48分)1、D【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.2、C【分析】利用三角形的外角定理及内角定理推出∠ADC与∠B的关系,进而代入数据求出结果.【详解】设的两个外角为、.则(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知,∴.故选:.【点睛】本题考查三角形的内角和定理及外角定理,熟记基本定理并灵活运用是解题关键.3、B【分析】根据阴影部分的面积为大长方形去掉四个小长方形,再根据图形找到m=a+2b进行代换即可判断.【详解】阴影部分的面积是:大长方形去掉四个小长方形为:,故A正确;由图可知:m=a+2b,所以,故B错误;由图可知:m=a+2b,所以,故C正确;由图可知:m=a+2b,所以,故D正确.故选:B【点睛】本题考查的是列代数式表示阴影部分的面积,从图形中找到m=a+2b并进行等量代换是关键.4、C【分析】根据最简二次根式的定义解答即可.【详解】A、,故不是最简二次根式;B、,故不是最简二次根式;C,、是最简二次根式,符合题意;D、,故不是最简二次根式;故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5、D【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;
②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;
③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;
④作DH⊥AB于H,由∠1=∠2,DC⊥AC,DH⊥AB,推出DC=DH即可解决问题;
⑤利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:①根据作图的过程可知,AD是∠BAC的平分线,故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④作DH⊥AB于H,∵∠1=∠2,DC⊥AC,DH⊥AB,∴DC=DH,在Rt△ACD中,CD=AD=1dm,∴点D到AB的距离是1dm;故④正确,⑤在Rt△ACB中,∵∠B=30°,∴AB=2AC,∴S△DAC:S△DAB=AC•CD:•AB•DH=1:2;故⑤正确.综上所述,正确的结论是:①②③④⑤,共有5个.故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.6、D【分析】根据图形,表示出长方体的长、宽、高,根据多项式乘以多项式的法则,计算即可.【详解】解:依题意得:无盖长方体的长为:a+1-2=a-1;无盖长方体的宽为:a-1-2=a-3;无盖长方体的高为:1∴长方体的体积为故选:D【点睛】本题主要考查多项式乘以多项式,熟记多项式乘以多项式的法则是解决此题的关键,此类问题中还要注意符号问题.7、A【分析】根据角平分线及得到BM=OM,CN=ON,得到三角形AMN的周长=AB+AC,再利用AB=5即可求出AC的长.【详解】∵平分,∴∠MBO=∠OBC,∵,∴∠OBC=∠MOB,∴∠MBO=∠MOB,∴BM=OM,同理CN=ON,∴的周长=AM+AN+MN=AM+AN+OM+ON=AB+AC=12,∵AB=5,∴AC=7,故选:A.【点睛】此题考查平行线的性质:两直线平行内错角相等,角平分线的定义,三角形周长的推导是解题的关键.8、C【分析】设原来高铁的平均速度为x千米/时,则提速后的平均速度为1.8x,根据题意可得:由甲到乙的行驶时间比原来缩短了1.5小时,列方程即可.【详解】解:设原来火车的平均速度为x千米/时,则提速后的平均速度为1.8x,由题意得,.故选C.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.9、C【分析】根据不等式的基本性质求解即可.【详解】∵关于的不等式的解集是,∴,解得:,故选:C.【点睛】本题主要考查了不等式的基本性质,解题的关键是熟记不等式的基本性质.10、B【分析】根据角平分线性质得出DE=DF,证出Rt△AED≌Rt△AFD,推出AF=AE,根据线段垂直平分线性质得出即可.【详解】∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,故A选项不符合题意;∵∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵DE=DF,
∴A、D都在线段EF的垂直平分线上,∴EG=FG,故C选项不符合题意;
∴AD⊥EF,故D选项不符合题意;根据已知不能推出EG=AG,故B选项符合题意;故选:B【点睛】本题考查了线段垂直平分线性质,角平分线性质,全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.11、B【分析】根据平行于x轴的直线上点的坐标特征得到a+1=7-a,然后解一元一次方程即可.【详解】解:∵PQ∥x轴,
∴点P和点Q的纵坐标相同,
即a+1=7-a,
∴a=1.
故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是掌握平行于x轴的直线上点的坐标特征.12、B【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,
∴AD=DC,
∵△ABD的周长=AB+BD+AD=16,
∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=1.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.二、填空题(每题4分,共24分)13、【分析】先画出图形,根据等腰三角形“三线合一”的性质及勾股定理即可求得结果.【详解】如图,AB=AC=8,BC=6,AD为高,则BD=CD=3,∴故答案为:【点睛】本题考查的是等腰三角形的性质,勾股定理,解答本题的关键是熟练掌握等腰三角形“三线合一”的性质:等腰三角形顶角平分线,底边上的高,底边上的中线重合.14、【分析】根据y轴上点的坐标特点:y轴上点的横坐标是0即可解答.【详解】∵点在轴上,∴3a-2=0,∴a=,故答案为:.【点睛】此题考查数轴上点的坐标特点,熟记点在每个象限及数轴上的坐标特点是解此题的关键.15、120°或75°或30°【解析】∵∠AOB=60°,OC平分∠AOB,点E在射线OA上,∴∠COE=30°.如下图,当△OCE是等腰三角形时,存在以下三种情况:(1)当OE=CE时,∠OCE=∠COE=30°,此时∠OEC=180°-30°-30°=120°;(2)当OC=OE时,∠OEC=∠OCE==75°;(3)当CO=CE时,∠OEC=∠COE=30°.综上所述,当△OCE是等腰三角形时,∠OEC的度数为:120°或75°或30°.点睛:在本题中,由于题中没有指明等腰△OCE的腰和底边,因此要分:(1)OE=CE;(2)OC=OE;(3)CO=CE;三种情况分别讨论,解题时不能忽略了其中任何一种情况.16、b>c>a.【分析】由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.17、且【详解】∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.18、a3b2【解析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b2三、解答题(共78分)19、(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【详解】(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.20、(1)见解析;(2)见解析.【分析】(1)结合互补四边形的定义,利用三角形外角的性质可证,利用三角形内角和定理可证,由此可证;(2)根据(1)的结论结合,可证,再根据等腰三角形的性质可证,再利用公共边AB可证明≌,根据全等三角形的性质和互补四边形的定义可证,再根据勾股定理可证.【详解】解:(1)证明:如下图,∵∴,又∵,∴,∴;(2)由(1)得,又∵,∴,∵,∴,又∵AB=BA,∴≌(ASA),∴,又∵,∴,∴△ABD为直角三角形,.【点睛】本题考查三角形的外角的性质,三角形内角和定理,全等三角形的性质和判定,勾股定理,等腰三角形的性质.理解互补四边形的定义是解决此题的关键.(1)中能灵活运用三角形外角的性质和三角形内角和定理是解题关键;(2)能根据勾股定理和互补四边形的定义想到证明是解题关键.21、(1)(1)4,;(2)或【分析】(1)根据点的横坐标可得OA的长,根据勾股定理即可求出OB的长;(2)①点在轴正半轴,可证≌,得到,从而求得;②点在轴负半轴,过点做平行轴的直线,分别交轴、的延长线于点、,证得≌,.【详解】解:(1)∵B(4,4),∴OA=4,AB=4,∵∠OAB=90°,∴.故答案为:4;;(2)①点在轴正半轴,过点做平行轴的直线,分别交轴、的延长线于点、.∵,,∴.同理.∴,,∵轴,∴.∴,∴,∵,∴.∴.∴≌.∴,∴.∴;②点在轴负半轴,过点做平行轴的直线,分别交轴、的延长线于点、.∵,,∴,同理.∴,.∵轴,∴.∴,∴.∵,∴.∴.∴≌.∴,∴.∴;∴或.【点睛】本题以坐标系为载体,主要考查了正方形的性质、等腰三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,属于常考题型,熟练掌握上述基本知识、灵活应用分类讨论思想和数形结合是解题的关键.22、,选,则原式.【分析】先将除法转化为乘法进行约分化简,再选取合适的x的值代入计算即可.【详解】∵x≠0,1,-1,∴,∴原式.【点睛】本题考查了分式的化简求值,要注意,取合适的数代入求值时,要特注意原式及化简过程中的每一步都有意义.23、(1)x=-1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)解:,检验:当时,,所以是原方程的根.(2)解:,检验:当时,,所以是原方程的增根,原方程无解.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24、2【分析】根据轴对称的性质得到CB′=CB=6,当AB′有最小值时,即AB′+B′C的长度最小,根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值.【详解】解:由轴对称的性质可知:CB′=CB=6(长度保持不变),当AB′+B′C的长度最小时,则是AB′的最小值,根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC-B′C=10-8=2,故答案为:2【点睛】本题主要考查了轴对称的性质,掌握两点之间线段最短是解题的关键,再做题的过程中应灵活运用所学知识.25、(1)1;(2);.【解析】试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;(2)①过点A作AG⊥PB于点G,根据勾股定理求出PB的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年塑料彩印地板砖项目可行性研究报告-20250101-171427
- 印刷包装居间合同委托书
- 游泳池改造施工人员协议
- 影院垃圾清运服务合同
- 软件公司装修合同安全规定
- 湖北水利水电职业技术学院《三维设计与图像处理》2023-2024学年第一学期期末试卷
- 2025年度肉类产品电商平台数据分析与挖掘合同范本2篇
- 2025年度版权保护合同违约责任规定3篇
- 2024年全球卫星导航系统合作项目合同
- 2025年度电商商铺分租租赁合同样本3篇
- 第5课《弘扬劳动精神劳模精神工匠精神》第1框《理解劳动精神劳模精神工匠精神》-【中职专用】《职业道德与法治》同步课堂课件
- 2025美国国防部财年美军武器装备采购预算中文版
- 70岁换证三力测试题附答案
- 中华医学会利益冲突声明模板
- 带你玩转VR虚拟现实智慧树知到期末考试答案2024年
- DAM10KW中波发射机各单元的检测与调整指导示意图
- 物业采购工作总结
- 人教版四年级上册加减乘除四则混合运算300题及答案
- 组织文化与领导力
- 胶粘性不良改善报告
- 河北省石家庄市桥西区2023-2024学年九年级上册期末英语模拟试题(附答案)
评论
0/150
提交评论