2022年江苏省南京市某学校数学单招试卷(含答案)_第1页
2022年江苏省南京市某学校数学单招试卷(含答案)_第2页
2022年江苏省南京市某学校数学单招试卷(含答案)_第3页
2022年江苏省南京市某学校数学单招试卷(含答案)_第4页
2022年江苏省南京市某学校数学单招试卷(含答案)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年江苏省南京市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.A.10B.5C.2D.12

2.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<1

3.设函数f(x)=x2+1,则f(x)是()

A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数

4.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,则tanθ的值为()A.2B.-2C.1/2D.-1/2

5.函数y=sinx+cosx的最小值和最小正周期分别是()A.

B.-2,2π

C.

D.-2,π

6.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0

7.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8

8.下列函数中,是增函数,又是奇函数的是(〕A.y=

B.y=1/x

C.y=x2

D.y=x1/3

9.A.7.5

B.C.6

10.A.B.C.

二、填空题(10题)11.

12.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.

13.

14.

15.

16.

17.若直线的斜率k=1,且过点(0,1),则直线的方程为

18.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。

19.设A=(-2,3),b=(-4,2),则|a-b|=

20.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

三、计算题(5题)21.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

24.解不等式4<|1-3x|<7

25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

四、证明题(5题)26.△ABC的三边分别为a,b,c,为且,求证∠C=

27.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

28.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

29.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

30.己知sin(θ+α)=sin(θ+β),求证:

五、简答题(5题)31.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

32.求证

33.化简

34.已知的值

35.化简

六、综合题(5题)36.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

37.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

38.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

40.

参考答案

1.A

2.B

3.B由题可知,f(x)=f(-x),所以函数是偶函数。

4.A平面向量的线性运算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.

5.A三角函数的性质,周期和最值.因为y=,所以当x+π/4=2kπ-π/2k∈Z时,ymin=T=2π.

6.A

7.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2

8.D函数奇偶性和单调性的判断.奇函数只有B,D,而B不是增函数.

9.B

10.A

11.3/49

12.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.

13.√2

14.0.4

15.1

16.4.5

17.3x-y+1=0因为直线斜率为k=1且过点(0,1),所以方程是y-2=3x,即3x-y+1=0。

18.2/π。

19.

。a-b=(2,1),所以|a-b|=

20.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

21.

22.

23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

24.

25.

26.

27.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

28.

29.

30.

31.

32.

33.sinα

34.

∴∴则

35.

36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

37.

38.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论