版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分2.下列命题是真命题的是()A.如果,那么B.三个内角分别对应相等的两个三角形相等C.两边一角对应相等的两个三角形全等D.如果是有理数,那么是实数3.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.4.下列四个图形中,是轴对称图形的有()A.4个 B.3个 C.2个 D.1个5.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a56.下列运算正确的是().A. B. C. D.7.下列根式是最简二次根式的是()A. B. C. D.8.已知:,,,,……,若(a、b为正整数)符合前面式子的规律,则a+b的值是().A.109 B.218 C.326 D.4369.如果m是任意实数,则点一定不在A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,已知BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是(
)A.AB=DE B.AC∥DF C.∠A=∠D D.AC=DF11.如图点在内,且到三边的距离相等.若,则等于()A. B. C. D.12.已知关于x的分式方程的解是负数,则a的取值范围是()A.a<1 B.a>1且a≠2 C.a<3 D.a<3且a≠2二、填空题(每题4分,共24分)13.在平面直角坐标系中,直线l过点M(3,0),且平行于y轴,点P的坐标是(﹣a,0),其中0<a<3,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,则PP2的长为_____.14.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A,B两地之间的距离为________千米.15.实数81的平方根是_____.16.在实数范围内分解因式=___________.17.若x2-mx+36是一个完全平方式,则m=____________________.18.若a-b=1,则的值为____________.三、解答题(共78分)19.(8分)某市为节约水资源,从2018年1月1日起调整居民用水价格,每立方米水费比2017年上涨.小明家2017年8月的水费是18元,而2018年8月的水费是11元.已知小明家2018年8月的用水量比2017年8月的用水量多5m1.(1)求该市2017年居民用水的价格;(2)小明家2019年8月用水量比2018年8月份用水量多了20%,求小明家2019年8月份的水费.20.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?21.(8分)如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,(1)关于x,y的方程组的解是;(2)a=;(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.22.(10分)如图,,以点为圆心,小于长为半径作弧,分别交,于,两点,再分别以,为圆心,大于长为半径作弧,两弧相交于点,作射线,交于点.(1)若,求的度数;(2)若,垂足为,延长交于点,连接,求证:.23.(10分)如图,直线,连接,为一动点.(1)当动点落在如图所示的位置时,连接,求证:;(2)当动点落在如图所示的位置时,连接,则之间的关系如何,你得出的结论是.(只写结果,不用写证明)24.(10分)如图在四边形ABCD中,AD=1,AB=BC=2,DC=3,AD⊥AB,求25.(12分)某小区有两段长度相等的道路需硬化,现分别由甲、乙两个工程队同时开始施工.如图的线段和折线是两队前6天硬化的道路长y甲、y乙(米)与施工时间x(天)之间的函数图象根据图象解答下列问题:(1)直接写出y甲、y乙(米)与x(天)之间的函数关系式.①当0<x≤6时,y甲=;②当0<x≤2时,y乙=;当2<x≤6时,y乙=;(2)求图中点M的坐标,并说明M的横、纵坐标表示的实际意义;(3)施工过程中,甲队的施工速度始终不变,而乙队在施工6天后,每天的施工速度提高到120米/天,预计两队将同时完成任务.两队还需要多少天完成任务?26.“双十一”活动期间,某淘宝店欲将一批水果从市运往市,有火车和汽车两种运输方式,火车和汽车途中的平均速度分别为100千米/时和80米/时.其它主要参考数据如下:运输工具途中平均损耗费用(元/时)途中综合费用(元/千米)装卸费用(元)火车200152000汽车20020900(1)①若市与市之间的距离为800千米,则火车运输的总费用是______元;汽车运输的总费用是______元;②若市与市之间的距离为千米,请直接写出火车运输的总费用(元)、汽车运输的总费用(元)分别与(千米)之间的函数表达式.(总费用=途中损耗总费用+途中综合总费用+装卸费用)(2)如果选择火车运输方式合算,那么的取值范围是多少?
参考答案一、选择题(每题4分,共48分)1、C【解析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【详解】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选C.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、D【分析】根据绝对值的意义、全等三角形的判定、实数的分类等知识对各选项逐一进行判断即可.【详解】A.如果,那么,故A选项错误;B.三个内角分别对应相等的两个三角形不一定全等,故B选项错误;C.两边一角对应相等的两个三角形不一定全等,当满足SAS时全等,当SSA时不全等,故C选项错误;D.如果是有理数,那么是实数,正确,故选D.【点睛】本题考查了真假命题的判断,涉及了绝对值、全等三角形的判定、实数等知识,熟练掌握和灵活运用相关知识是解题的关键.3、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.4、B【分析】根据轴对称图形的定义依次进行判断即可.【详解】把某个图形沿某条直线折叠,如果图形的两部分能完全重合,那么这个是轴对称图形,因此第1,2,3是轴对称图形,第4不是轴对称图形.【点睛】本题考查轴对称图形,掌握轴对称图形的定义为解题关键.5、A【分析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.6、D【解析】分别运用同底数幂的乘法、积的乘方、同类项的合并计算,即可判断.【详解】A、,错误,该选项不符合题意;B、,错误,该选项不符合题意;C、,不是同类项,不能合并,该选项不符合题意;D、,正确,该选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法、积的乘方、同类项的合并,熟练掌握同底数幂的乘法、积的乘方、同类项的合并的运算法则是解题的关键.7、C【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【详解】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开得尽方的因数,不是最简二次根式,故本选项错误;故选:C.【点睛】本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开得尽方的因数或因式.8、A【分析】通过观察已知式子可得分子与第一个加数相同,分母等于分子的平方减1,即可求解.【详解】解:由,,,,……,可知分子与第一个加数相同,分母等于分子的平方减1,∴在中,b=10,a=102-1=99,∴a+b=109,故选:A.【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律是解题的关键.9、D【分析】求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵,∴点P的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P一定不在第四象限.故选D.10、D【分析】根据全等三角形的判定定理分别进行分析即可.【详解】A.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.∵∠B=∠E,AB=DE,∴∆ABC≌∆DEF(SAS),故A不符合题意.B.∵AC∥DF,∴∠ACE=∠DFC,∴∠ACB=∠DFE(等角的补角相等)∵BF=CE,∠B=∠E,∴BF-CF=CE-CF,即BC=EF,∴∆ABC≌∆DEF(ASA),故B不符合题意.C.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.而∠A=∠D,∠B=∠E,∴∆ABC≌∆DEF(AAS),故C不符合题意.D.∵BF=CE,∴BF-CF=CE-CF,即BC=EF,而AC=DF,∠B=∠E,三角形中,有两边及其中一边的对角对应相等,不能判断两个三角形全等,故D符合题意.故选D.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11、A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的内角和定理列式计算即可得解.【详解】∵O到三边AB、BC、CA的距离OF=OD=OE,∴点O是三角形三条角平分线的交点,∵,∴∠ABC+∠ACB=180−50=130,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130=65,在△OBC中,∠BOC=180−(∠OBC+∠OCB)=180−65=115.故选:A.【点睛】本题考查了到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,要注意整体思想的利用.12、D【分析】先求得分式方程的解,然后再解不等式即可,需要注意分式方程的分母不为4.【详解】解:去分母得:a﹣4=x+4.解得:x=a﹣3.∵方程的解为负数,且x+4≠4,∴a﹣3<4且a﹣3+4≠4.∴a<3且a≠4.∴a的取值范围是a<3且a≠4.故选:D.【点睛】本题主要考查了分式方程,已知方程解的情况求参数的值,解题过程中易忽略分式有意义的条件是分母不为4,灵活的求含参数的分式方程的解是解题的关键.二、填空题(每题4分,共24分)13、1【分析】利用坐标对称原理可作相应地推导.【详解】解:如图,当0<a<3时,∵P与P1关于y轴对称,P(﹣a,0),∴P1(a,0),又∵P1与P2关于l:直线x=3对称,设P2(x,0),可得:,即,∴P2(1﹣a,0),则.故答案为1.【点睛】掌握直角坐标系中坐标关于轴对称的原理为本题的关键.14、450【解析】试题分析:设甲车的速度为x千米/时,乙车的速度为y千米/时,由题意得:,解得:,故A,B两地之间的距离为5×90=450(千米).点睛:本题主要考查的就是函数图像的实际应用以及二元一次方程组的应用结合题型,属于中等难度.解决这个问题的时候,我们一定要明确每一段函数的实际意义,然后利用二元一次方程组的实际应用来解决这个问题.对于这种题型,关键我们就是要理解函数图像的实际意义,然后将题目进行简化得出答案.15、±1【分析】根据平方根的定义即可得出结论.【详解】解:实数81的平方根是:±=±1.故答案为:±1【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.16、【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为17、±12【解析】试题解析:∵x2+mx+36是一个完全平方式,∴m=±12.故答案为:±12.18、1【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:=(a+b)(a-b)-2b=a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.三、解答题(共78分)19、(1)该市2017年的用水价格为每立方米元;(2)小明家2019年8月的水费为19.6元.【分析】(1)设该市2017年居民用水价格为每立方米x元,则2018年的用水价格为每立方米(1+)x元,结合水费再分别表示出用水量,根据用水量之间的关系列方程求解;(2)根据2018年8月的水费以及2019年8月用水量比2018年8月份用水量多20%,可得出2019年8月的水费.【详解】解:(1)设该市2017年居民用水价格为每立方米x元,则2018年的用水价格为每立方米(1+)x元,根据题意得,,解得,经检验,是原方程的解.答:该市2017年的用水价格为每立方米元;(2)根据题意得,小明家2019年8月用水量比2018年8月份用水量多了20%,则2019年8月的水费比2018年8月的水费多20%,则11×(1+20%)=19.6(元).答:小明家2019年8月份的水费为19.6元.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意解分式方程必须检验.20、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x元,则每台电冰箱的进件为(x+400)元,,解得,x=1600,经检验,x=1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元),当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元),∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.21、(1);(2)-1;(3)2【分析】(1)先求出点P为(1,2),再把P点代入解析式即可解答.(2)把P(1,2)代入y=ax+3,即可解答.(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.【详解】(1)把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为;(2)把P(1,2)代入y=ax+3,得2=a+3,解得a=﹣1.故答案为﹣1;(3)∵函数y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),∴这两个交点之间的距离为3﹣(﹣1)=2,∵P(1,2),∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×2×2=2.【点睛】此题考查一次函数与二元一次方程,解题关键在于把已知点代入解析式求解.22、(1);(2)详见解析【分析】(1)先根据“两直线平行,同旁内角互补”求出∠CAB的度数,再由作法可知AM平分∠CAB,根据角平分线的定义求解即可;(2)由角平分线的定义及平行线的性质等量代换可得,可知AC=CM,根据等腰三角形的“三线合一”可得CO垂直平分AM,根据垂直平分线的性质即可证明结论.【详解】(1),,又,,由作法知,是的平分线,(2)由作法知,是的平分线,又∴,又垂直平分线段.【点睛】本题考查的是平行线的性质,等腰三角形的性质和判定,垂直平分线的性质,角平分线的尺规作图,解题关键是能从作法中确定AM平分∠CAB.23、(1)见解析(2)∠APB+∠PAC+∠PBD=360【分析】(1)延长AP交BD于M,根据三角形外角性质和平行线性质得出∠APB=∠AMB+∠PBD,∠PAC=∠AMB,代入求出即可;(2)过P作EF∥AC,根据平行线性质得出∠PAC+∠APF=180,∠PBD+∠BPF=180,即可得出答案.【详解】(1)延长AP交BD于M,如图1,∵AC∥BD,∴∠PAC=∠AMB,∵∠APB=∠AMB+∠PBD,∴∠APB=∠PAC+∠PBD;(2)∠APB+∠PAC+∠PBD=360,如图2,过P作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠PAC+∠APF=180,∠PBD+∠BPF=180,∴∠PAC+∠APF+∠PBD+∠BPF=360,∴∠APB+∠PAC+∠PBD=360,∴∠APB+∠PAC+∠PBD=360.【点睛】本题考查了平行线的性质和三角形外角性质的应用,解题的关键是熟知平行线的性质及三角形外角性质的应用.24、【解析】连接BD,则可以计算△ABD的面积,根据AB、BD可以计算BD的长,根据CD,BC,BD可以判定△BCD为直角三角形,根据BC,BD可以计算△BCD的面积,四边形ABCD的面积为△ABD和△BCD面积之和.【详解】解:连接BD,在直角△ABD中,AC为斜边,且AB=BC=2,AD=1则BD==,,∴BC2+BD2=CD2,即△ACD为直角三角形,且∠DAC=90°,四边形ABCD的面积=S△ABD+S△BCD=AB×AD+BD×BC=.=1+答:四边形ABCD的面积为1+.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了勾股定理的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年设备监理师考试题库含答案【预热题】
- 家政服务卫生安全规定
- 花艺圆形花束课程设计
- 电子行业产品知识培训总结
- 项目立项申请计划
- 文化艺术行业市场总结
- 销售业绩评估方法培训
- 青少年法治教育工作安排计划
- 出版合同范本(2篇)
- 2024施工安全生产承诺书范文(34篇)
- 2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)英语试题
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之21:“7支持-7.5成文信息”(雷泽佳编制-2025B0)
- 2024年度大数据支撑下的B2B电子商务购销服务合同3篇
- 广东省广州市2025届高三上学期12月调研测试语文试卷(含答案)
- 2023-2024年电商直播行业现状及发展趋势研究报告
- 中央2024年市场监管总局直属事业单位招聘中层干部历年参考题库(频考版)含答案解析
- 【9历期末】安徽省利辛县部分学校2023~2024学年九年级上学期期末考试历史试卷
- GB/T 44949-2024智能热冲压成形生产线
- 阜阳市重点中学2025届高考数学全真模拟密押卷含解析
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 2024-2025学年统编版七年级语文上学期期末真题复习 专题01 古诗文名篇名句默写
评论
0/150
提交评论