版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年宁夏回族自治区中卫市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.-1B.-4C.4D.2
2.已知等差数列的前n项和是,若,则等于()A.
B.
C.
D.
3.已知点A(1,-3)B(-1,3),则直线AB的斜率是()A.
B.-3
C.
D.3
4.己知tanα,tanβ是方程2x2+x-6=0的两个根,则tan(α+β)的值为()A.-1/2B.-3C.-1D.-1/8
5.A.B.C.D.
6.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be
7.A.B.{3}
C.{1,5,6,9}
D.{1,3,5,6,9}
8.A.2B.3C.4
9.A.1/4B.1/3C.1/2D.1
10.设是l,m两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l//α,α∩β=m,则l//m
B.若l//α,m⊥l,则m⊥α
C.若l//α,m//α,则l//m
D.若l⊥α,l///β则a⊥β
二、填空题(10题)11.
12.的值是
。
13.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
14.log216+cosπ+271/3=
。
15.执行如图所示的流程图,则输出的k的值为_______.
16.在△ABC中,AB=,A=75°,B=45°,则AC=__________.
17.函数f(x)=+㏒2x(x∈[1,2])的值域是________.
18.
19.等差数列{an}中,已知a4=-4,a8=4,则a12=______.
20.在锐角三角形ABC中,BC=1,B=2A,则=_____.
三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
22.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
24.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、证明题(5题)26.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
27.若x∈(0,1),求证:log3X3<log3X<X3.
28.己知sin(θ+α)=sin(θ+β),求证:
29.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
30.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
五、简答题(5题)31.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
32.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
33.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
34.化简
35.求证
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
40.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
参考答案
1.C
2.D设t=2n-1,则St=t(t+1+1)=t(t+2),故Sn=n(n+2)。
3.B
4.D
5.A
6.B不等式的性质。由不等式性质得B正确.
7.D
8.B
9.C
10.D空间中直线与平面的位置关系,平面与平面的位置关系.对于A:l与m可能异面,排除A;对于B;m与α可能平行或相交,排除B;对于C:l与m可能相交或异面,排除C
11.-1/16
12.
,
13.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
14.66。log216+cosπ+271/3=4+(-1)+3=6。
15.5程序框图的运算.由题意,执行程序框图,可得k=1,S=1,S=3,k=2不满足条件S>16,S=8,k=3不满足条件S>16,S=16,k=4不满足条件S>16,S=27,k=5满足条件S>16,退出循环,输出k的值为5.故答案为:5.
16.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
17.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].
18.(-∞,-2)∪(4,+∞)
19.12.等差数列的性质.根据等差数列的性质有2a8=a4+a12,a12=2a8-a4=12.
20.2
21.
22.
23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
24.
25.
26.
27.
28.
29.
∴PD//平面ACE.
30.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
31.
32.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
33.由已知得:由上可解得
34.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
35.
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.
38.
39.
40.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诉讼案件处理经验总结
- 房地产开发业会计工作总结
- 网上购物系统课程设计jsp
- 茶叶店销售员工作总结
- 工业行业保安工作总结
- 电子商务行业行政后勤工作总结
- 电影影视销售心得体会
- 玻璃制品生产招标合同三篇
- 劝退员工合同(2篇)
- 创新项目保密协议书(2篇)
- 2024养老院消防设备升级与消防系统维护服务合同3篇
- 单位内部治安保卫制度
- 人才引进政策购房合同模板
- 学生宿舍消防安全制度模版(3篇)
- GB/T 44990-2024激光熔覆修复层界面结合强度试验方法
- 四川省成都市2023-2024学年高二上学期期末调研考试语文试题(解析版)
- ps经典课程-海报设计(第六讲)
- 江苏省泰州市2023-2024学年高一上学期期末语文试题及答案
- 【MOOC】工程制图解读-西安交通大学 中国大学慕课MOOC答案
- 期末复习(试题)-2024-2025学年三年级上册数学苏教版
- 浙江省杭州市西湖区2023-2024学年九年级上学期期末语文试题(解析版)
评论
0/150
提交评论