2021年山东省日照市某学校数学高职单招模拟考试(含答案)_第1页
2021年山东省日照市某学校数学高职单招模拟考试(含答案)_第2页
2021年山东省日照市某学校数学高职单招模拟考试(含答案)_第3页
2021年山东省日照市某学校数学高职单招模拟考试(含答案)_第4页
2021年山东省日照市某学校数学高职单招模拟考试(含答案)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年山东省日照市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.A.1/4B.1/3C.1/2D.1

2.已知a=(1,2),则|a|=()A.1

B.2

C.3

D.

3.下列句子不是命题的是A.

B.

C.

D.

4.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()

A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心

5.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7

6.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

7.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0

8.不等式4-x2<0的解集为()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)

9.设a>b>0,c<0,则下列不等式中成立的是A.ac>bc

B.

C.

D.

10.A.3个B.2个C.1个D.0个

二、填空题(10题)11.若复数,则|z|=_________.

12.

13.过点(1,-1),且与直线3x-2y+1=0垂直的直线方程为

14.

15.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.

16.

17.在锐角三角形ABC中,BC=1,B=2A,则=_____.

18.

19.圆x2+y2-4x-6y+4=0的半径是_____.

20.若集合,则x=_____.

三、计算题(5题)21.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

23.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

24.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

四、证明题(5题)26.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

27.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

28.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

29.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

30.

五、简答题(5题)31.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

32.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

33.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

34.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

35.证明:函数是奇函数

六、综合题(5题)36.

37.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

38.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

参考答案

1.C

2.D向量的模的计算.|a|=

3.C

4.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,

5.D

6.C充分条件,必要条件,充要条件的判断.由x>1知,x3>1;由x3>1可推出x>1.

7.A

8.D不等式的计算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

9.B

10.C

11.

复数的模的计算.

12.

13.

14.-5或3

15.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2

16.10函数值的计算.由=3,解得a=10.

17.2

18.2/5

19.3,

20.

,AB为A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=

21.

22.

23.

24.

25.

26.

27.

28.

∴PD//平面ACE.

29.

30.

31.

32.

33.(1)(2)∴又∴函数是偶函数

34.

35.证明:∵∴则,此函数为奇函数

36.

37.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为

38.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论