下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖南省岳阳市某学校数学高职单招测试试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知等差数列{an}满足a2+a4=4,a3+a5=它的前10项的和Sn()A.138B.135C.95D.23
2.A.B.C.D.
3.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角
4.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1
5.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
6.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600
7.A.2B.1C.1/2
8.A.偶函数B.奇函数C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数
9.函数的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)
10.A.3/5B.-3/5C.4/5D.-4/5
二、填空题(10题)11.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.
12.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
13.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.
14.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.
15.
16.以点(1,2)为圆心,2为半径的圆的方程为_______.
17.在△ABC中,AB=,A=75°,B=45°,则AC=__________.
18.
19.设lgx=a,则lg(1000x)=
。
20.从某校随机抽取100名男生,其身高的频率分布直方图如下,则身高在[166,182]内的人数为____.
三、计算题(5题)21.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
22.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
24.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
25.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
四、证明题(5题)26.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
27.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
28.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
29.己知sin(θ+α)=sin(θ+β),求证:
30.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
五、简答题(5题)31.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
32.化简
33.化简
34.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
35.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
六、综合题(5题)36.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
37.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
38.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
39.
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.C因为(a3+a5)-(a2+a4)=2d=6,所以d=3,a1=-4,所以S10=10a1+10*(10-1)d/2=95.
2.A
3.D
4.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中
5.A向量的运算.=(l,2)+(3,4)=(4,6).
6.B
7.B
8.A
9.C对数的性质.由题意可知x满足㏒2x-1>0,即㏒2x>㏒22,根据对数函数的性质得x>2,即函数f(x)的定义域是(2,+∞).
10.D
11.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.
12.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
13.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
14.-3或7,
15.7
16.(x-1)2+(y-2)2=4圆标准方程.圆的标准方程为(x-a)2+(y-2)2=r2,a=1,b=2,r=2
17.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
18.1
19.3+alg(1000x)=lg(1000)+lgx=3+a。
20.64,在[166,182]区间的身高频率为(0.050+0.030)×8(组距)=0.64,因此人数为100×0.64=64。
21.
22.
23.
24.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
25.
26.
∴PD//平面ACE.
27.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
28.
29.
30.
31.
32.
33.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
34.
35.
36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
37.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园切苹果教案8篇
- 广告发布合作合同(装修公司)(3篇)
- 【+高++中语文】《烛之武退秦师》课件++统编版高中语文必修下册
- 血液净化进修课件
- 女性心理健康课件
- 项目部治理人员安全培训试题【综合题】
- 温岭市青少年车辆模型竞赛规则
- 社会心理学-第一章
- 消息类电视新闻节目策划-西京新闻快讯
- 分数的意义和性质分数和小数的互化
- 2023年广州市法院书记员招聘笔试题库及答案解析
- 锂矿及碳酸锂的生产工艺基本知识课件
- 一、小柴胡汤课件
- 2022-2023学年浙科版(2019)选择必修三 5.2 我国禁止生殖性克隆人 课件(28张)
- 洗车店管理制度
- 2022版道德与法治新课程标准课标测试卷测试题库(含答案)(教师招聘试卷教资考试)
- 高中英语选修一(人教版)2-1Looking into the Future 教学课件
- 电动汽车充电桩申请安装备案表
- 想起这件事-我就-课件
- 中控立磨操作考试试题
- 苏教版三年级上册数学第三单元练习题【含答案】
评论
0/150
提交评论