版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图,则输出的值为( )ABCD2在函数:;中,最小正周期为的所有函数为( )ABCD3已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4函数的大致图象为( )ABCD5已知数列为等差数列,且,则的值为( )ABCD6如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是( ).ABCD7把满足条件(1),(2),使得的函数称为“D函数”,下列函数是“D函数”的个数为(
3、) A1个B2个C3个D4个8下列函数中,在区间上为减函数的是( )ABCD9已知等差数列的前13项和为52,则( )A256B-256C32D-3210以下关于的命题,正确的是A函数在区间上单调递增B直线需是函数图象的一条对称轴C点是函数图象的一个对称中心D将函数图象向左平移需个单位,可得到的图象11现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为ABCD12一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知实数满足
4、,则的最小值是_.14在正奇数非减数列中,每个正奇数出现次.已知存在整数、,对所有的整数满足,其中表示不超过的最大整数.则等于_.15在的展开式中,项的系数是_(用数字作答)16如图所示的流程图中,输出的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.18(12分)2019年入冬时节,长春市民为了迎接2023年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评
5、估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)19(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.20(12分)已知数列满足(),数列的前项和,(),且,(1)求
6、数列的通项公式:(2)求数列的通项公式(3)设,记是数列的前项和,求正整数,使得对于任意的均有21(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,求的面积22(10分)已知椭圆的焦距为2,且过点(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,()证明:平分线段(其中为坐标原点);()当取最小值时,求点的坐标参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:
7、B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.2A【解析】逐一考查所给的函数: ,该函数为偶函数,周期 ;将函数 图象x轴下方的图象向上翻折即可得到 的图象,该函数的周期为 ;函数的最小正周期为 ;函数的最小正周期为 ;综上可得最小正周期为的所有函数为.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误一般地,经过恒等变形成“yAsin(x),yAcos(x),yAtan(x)”的形式,再利用周期公式即可3B【解析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可【详解】解:若,则,即成立,若
8、,则由,得,则“”是“”的必要不充分条件,故选:B【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题4A【解析】利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,.故选:A【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.5B【解析】由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得【详解】解:由等差数列的性质可得,解得,故选:B【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题6C【解析】易得,又,平方计算即可得到答案
9、.【详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.7B【解析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,不满足(2);不满足(1);不满足(2);均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.8C【解析】利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在
10、区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.9A【解析】利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,得.选A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.10D【解析】利用辅助角公式化简函数得到,再逐项判断正误得到答案.【详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,不是对称中心,错误D选项,图象向左平移需个单位得到,正确
11、故答案选D【点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.11B【解析】求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基
12、本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.12A【解析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,平面,且,这个四棱锥中最长棱的长度是故选【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】先画出不等式组对应的可行域,再利用数形结合分析解答得解.【详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-3x+z,它表示斜率为-3,纵截距为z的直线系,平移直
13、线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.142【解析】将已知数列分组为(1),共个组.设在第组,则有,即.注意到,解得.所以,.因此,.故.15 【解析】的展开式的通项为:.令,得.答案为:-40.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r1项,由特定项得出r值,最后求出其参数.164【解析】根据流程图依次运
14、行直到,结束循环,输出n,得出结果.【详解】由题:,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)【解析】(1)第(1)问,连交于,连接.证明/ ,即证平面. (2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知 又为的中点,为的重心,在中, ,故/ .又平面, 平面, 平面.方法二:过作交PD于N,过F作FM|AD交CD于M,连接MN, G为PAD的重心,又ABCD为梯形,AB|CD,又由
15、所作GN|AD,FM|AD,得/ ,所以GNMF为平行四边形.因为GF|MN, (2) 方法一:由平面平面, 与均为正三角形, 为的中点, ,得平面,且 由(1)知/平面, 又由梯形ABCD,AB|CD,且,知 又为正三角形,得,得三棱锥的体积为. 方法二: 由平面平面, 与均为正三角形, 为的中点, ,得平面,且由, 而又为正三角形,得,得.,三棱锥的体积为.18(1)(2)填表见解析;不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系【解析】(1)利用频率分布直方图小长方形的面积和为列方程,解方程求得的值.(2)根据表格数据填写列联表,计算出的值,由此判断不能在犯错误的概
16、率不超过0.01的前提下认为擅长冰上运动与性别有关系.【详解】(1)由题意,解得.(2)由频率分布直方图可得不擅长冰上运动的人数为.完善列联表如下:擅长不擅长合计男性203050女性104050合计3070100,对照表格可知,不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系.【点睛】本小题主要考查根据频率分布直方图计算小长方形的高,考查列联表独立性检验,属于基础题.19(1)见解析;(2)(,0【解析】(1)利用导数求x0时,f(x)的极大值为,即证(2)等价于k,x0,令g(x),x0,再求函数g(x)的最小值得解.【详解】(1)函数f(x)x2e3x,f(x)2xe3
17、x+3x2e3xx(3x+2)e3x由f(x)0,得x或x0;由f(x)0,得,f(x)在(,)内递增,在(,0)内递减,在(0,+)内递增,f(x)的极大值为,当x0时,f(x)(2)x2e3x(k+3)x+2lnx+1,k,x0,令g(x),x0,则g(x),令h(x)x2(1+3x)e3x+2lnx1,则h(x)在(0,+)上单调递增,且x0+时,h(x),h(1)4e310,存在x0(0,1),使得h(x0)0,当x(0,x0)时,g(x)0,g(x)单调递减,当x(x0,+)时,g(x)0,g(x)单调递增,g(x)在(0,+)上的最小值是g(x0),h(x0)+2lnx01=0,所
18、以,令,令所以=1,,g(x0) 实数k的取值范围是(,0【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20(1)()(2),(3)【解析】(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;(2)由递推公式,得, 结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,记,利用函数单调性可求的范围,从而列不等式可解.【详解】解:(1)因为数列满足();当时,检验当时, 成立.所以,数列的通项公式为()(2)由,得, 所以, 由,得,即, 所以, 由,得,因为,所以,上式同除以,得,即,所以,数列时首项为1,公差为1的等差数列,故,(3)因为所以,记,当时,所以,当时,数列为单调递减,当时,从而,当时,因此,所以,对任意的,综上,【点睛】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水库承包垂钓合同范例
- 投资运营收费合同范例
- 天津滨海职业学院《美术课程标准与教材研究》2023-2024学年第一学期期末试卷
- 物流工期延期合同范例
- 公司融资合同范例餐饮
- 格式加工合同范例
- 产品打版合同范例
- N3层级护士三基+临床实践练习题(含参考答案)
- 2025年张掖考从业资格证货运试题
- 充值会员转让合同范例
- 国家开放大学电大本科《工程经济与管理》2023-2024期末试题及答案(试卷代号:1141)
- 2023年全国职业院校技能大赛赛项-ZZ019 智能财税基本技能赛题 - 模块二-答案
- 2024-2030年中国船用燃料行业市场发展趋势与前景展望战略分析报告
- 红色文化知识题【小学低龄组(408题)】附有答案
- 华中科技大学青年长江学者答辩模板
- 安防个人工作总结
- 唐山市丰润区2022-2023学年七年级上学期期末考试数学试题 【带答案】
- 跟骨骨折的分型与治疗讲座
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 人力资源管理智慧树知到期末考试答案章节答案2024年湖南大学
- 西方音乐史智慧树知到期末考试答案章节答案2024年四川音乐学院
评论
0/150
提交评论