拓展资料:幂函数中的三类讨论题_第1页
拓展资料:幂函数中的三类讨论题_第2页
拓展资料:幂函数中的三类讨论题_第3页
拓展资料:幂函数中的三类讨论题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE4幂函数中的三类讨论题所谓分类讨论,实质上是“化整为零,各个击破,再积零为整”的策略分类讨论时应注重理解和掌握分类的原则、方法与技巧,做到确定对象的全体,明确分类的标准,不重、不漏的分类讨论在幂函数中,分类讨论的思想得到了重要的体现,可根据幂函数的图象和性质,依据幂函数的单调性分类讨论,使得结果得以实现类型一:求参数的取值范围例1已知函数为偶函数,且,求m的值,并确定的解析式分析:函数为偶函数,已限定了必为偶数,且,只要根据条件分类讨论便可求得m的值,从而确定的解析式解:是偶函数,应为偶数又,即,整理,得,又,或1当m=0时,为奇数(舍去);当时,为偶数故m的值为1,评注:利用分类讨论

2、思想解题时,要充分挖掘已知条件中的每一个信息,做到不重不漏,才可为正确解题奠定坚实的基础类型二:求解存在性问题例2已知函数,设函数,问是否存在实数,使得在区间是减函数,且在区间上是增函数若存在,请求出来;若不存在,请说明理由分析:判断函数的单调性时,可以利用定义,也可结合函数的图象与性质进行判断,但要注意问题中符号的确定,要依赖于自变量的取值区间解:,则假设存在实数,使得满足题设条件,设,则若,易知,要使在上是减函数,则应有恒成立,而,从而要使恒成立,则有,即若,易知,要使在上是增函数,则应有恒成立,而,要使恒成立,则必有,即综上可知,存在实数,使得在上是减函数,且在上是增函数评注:本题是一道

3、综合性较强的题目,是幂函数性质的综合应用判断函数的单调性时,可从定义入手,也可根据函数图象和性质进行判断,但对分析问题和解决问题的能力要求较高,这在平时要注意有针对性的训练类型三:类比幂函数性质,讨论函数值的变化情况例3讨论函数在时随着的增大其函数值的变化情况分析:首先应判定函数是否为常数函数,再看幂指数,并参照幂函数的性质讨论解:(1)当,即或时,为常函数;(2)当时,或,此时函数为常函数;(3)即时,函数为减函数,函数值随的增大而减小;(4)当即或时,函数为增函数,函数值随的增大而增大;(5)当即时,函数为增函数,函数值随的增大而增大;(6)当,即时,函数为减函数,函数值随的增大而减小评注

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论