版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180后,C点的坐标是( )A(2,0)B(3,0)C(2,1)D(2,1)2下列运算正确的是(
2、)A4x+5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12a8=a43若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )ABCD4对于非零的两个实数、,规定,若,则的值为( )ABCD5下列计算正确的是( )Aa3a3=a9 B(a+b)2=a2+b2 Ca2a2=0 D(a2)3=a66若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是( )A3B6C9D367如图,在ABC中,D、E分别是边AB、AC的中点,若B
3、C=6,则DE的长为()A2B3C4D68已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )Ay=-x2-4x-1By=-x2-4x-2Cy=-x2+2x-1Dy=-x2+2x-29抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A中位数 B众数 C平均数 D方差10一个数和它的倒数相等,则这个数是( )A1B0C1D1和011如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习12如图,A
4、BC为直角三角形,C=90,BC=2cm,A=30,四边形DEFG为矩形,DE=2cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合RtABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止设RtABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs能反映ycm2与xs之间函数关系的大致图象是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x的一元二次方程x22x+m=0有实数根,则m的取值范围是 14不等式4x的解集为_15填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是 16如图,点A的坐标是
5、(2,0),ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_17某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.18已知RtABC中,C=90,AC=3,BC=,CDAB,垂足为点D,以点D为圆心作D,使得点A在D外,且点B在D内设D的半径为r,那么r的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时下半身与地
6、面成80(FGK80),身体前倾成125(EFG125),脚与洗漱台距离GC15cm(点D,C,G,K在同一直线上)(cos800.17,sin800.98,1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?20(6分)实践:如图ABC是直角三角形,ACB90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB与O的位置关系是_ .(直接写出答案)若AC=5,BC=12,求O 的半径.21(6分
7、)解不等式组,并将解集在数轴上表示出来22(8分)如图,抛物线l:y=(xh)22与x轴交于A,B两点(点A在点B的左侧),将抛物线在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数的图象(1)若点A的坐标为(1,0)求抛物线l的表达式,并直接写出当x为何值时,函数的值y随x的增大而增大;如图2,若过A点的直线交函数的图象于另外两点P,Q,且SABQ=2SABP,求点P的坐标;(2)当2x3时,若函数f的值随x的增大而增大,直接写出h的取值范围23(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有18
8、3人次获奖,求这两年中获奖人次的平均年增长率24(10分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高你认为这种测量方法是否可行?请说明理由25(10分)如图,AB是O的直径,点C在O上,CE AB于E, CD平分ECB, 交过点B的射线于D, 交AB于F, 且BC=BD(1)求证:BD是O的切线;(2)若AE=9, CE=12, 求BF的长
9、26(12分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0-50优m51-100良44101-150轻度污染n151-200中度污染4201-300重度污染2300以上严重污染2(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?27(12分)已知AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长
10、线于F,切点为G,连接AG交CD于K(1)如图1,求证:KEGE;(2)如图2,连接CABG,若FGBACH,求证:CAFE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE,AK,求CN的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180后C的对应点设是C,则AC=AC=2,则OC=3,故C的坐标是(3,0)故选B考点:
11、坐标与图形变化-旋转2、D【解析】各式计算得到结果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键3、D【解析】根据抛物线与x轴有两个不同的交点,根的判别式0,再分a0和a0两种情况对C、D选项讨论即可得解【详解】A、二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、x1x2,=b2-4ac0,故本选项错误;C、若a0,则x1x0 x2,若a0,则x0 x1x2或x1
12、x2x0,故本选项错误;D、若a0,则x0-x10,x0-x20,所以,(x0-x1)(x0-x2)0,a(x0-x1)(x0-x2)0,若a0,则(x0-x1)与(x0-x2)同号,a(x0-x1)(x0-x2)0,综上所述,a(x0-x1)(x0-x2)0正确,故本选项正确4、D【解析】试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.考点:1.新运算;2.分式方程.5、D.【解析】试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算6、C【解析】设交点式为y=-(
13、x-m)(x-m+6),在把它配成顶点式得到y=-x-(m-3)2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值【详解】设抛物线解析式为y=-(x-m)(x-m+6),y=-x2-2(m-3)x+(m-3)2-1=-x-(m-3)2+1,抛物线的顶点坐标为(m-3,1),该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,即n=1故选C【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质7、B【解析】根据三角形的中位线等于第三
14、边的一半进行计算即可【详解】D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=6,DE=12故选B【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用8、D【解析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式【详解】解:y=x14x5=(x+1)11,顶点坐标是(1,1)由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数左
15、、右平移时,顶点的纵坐标不变,平移后的顶点坐标为(1,1),函数解析式是:y=(x1)11=x1+1x1,即:y=x1+1x1故选D【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变同时考查了二次函数的性质,正比例函数y=x的图象上点的坐标特征9、A【解析】7人成绩的中位数是第4名的成绩参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A【点睛】本题主要考查统计的有关知识,
16、主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.10、C【解析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.12、A【解析】C=90,BC=2cm,A=30,AB=4,由勾股定理得:AC=2,四边形DEF
17、G为矩形,C=90,DE=GF=2,C=DEF=90,ACDE,此题有三种情况:(1)当0 x2时,AB交DE于H,如图DEAC,即,解得:EH=x,所以y=xx=x2,x 、y之间是二次函数,所以所选答案C错误,答案D错误,a=0,开口向上;(2)当2x6时,如图,此时y=22=2,(3)当6x8时,如图,设ABC的面积是s1,FNB的面积是s2,BF=x6,与(1)类同,同法可求FN=X6,y=s1s2,=22(x6)(X6),=x2+6x16,0,开口向下,所以答案A正确,答案B错误,故选A点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.二、填空题:(本大题共6个小
18、题,每小题4分,共24分)13、m1【解析】试题分析:由题意知,=44m0,m1故答案为m1考点:根的判别式14、x1【解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.15、2【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数因此,图中阴影部分的两个数分别是左下是12,右上是1解:分析可得图中阴影部分的两个数分别是左下是12,右上
19、是1,则m=12110=2故答案为2考点:规律型:数字的变化类16、【解析】已知ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于RtOBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.【详解】过点B作BC垂直OA于C,点A的坐标是(2,0),AO=2,ABO是等边三角形,OC=1,BC=,点B的坐标是把代入,得 故答案为【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;17、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两
20、年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础18、【解析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论【详解】解:RtABC中,ACB=90,AC=3,BC=,AB=1CDAB,CD=ADBD=CD2,设AD=x,BD=
21、1-x解得x=,点A在圆外,点B在圆内,r的范围是,故答案为【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80,FN=100sin8098,E
22、FG=125,EFM=18012510=45,FM=66cos45=46.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm20、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)O 的半径为.【解析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与O的位置关系是
23、相切;(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可【详解】(1)作BAC的平分线,交BC于点O;以O为圆心,OC为半径作圆AB与O的位置关系是相切(2)相切;AC=5,BC=12,AD=5,AB=13,DB=AB-AD=13-5=8,设半径为x,则OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=答:O的半径为【点睛】本题考查了1作图复杂作图;2角平分线的性质;3勾股定理;4切线的判定21、原不等式组的解集为4x1,在数轴上表示见解析【解析】分析:根据解一元一次不等
24、式组的步骤,大小小大中间找,可得答案详解:解不等式,得x4,解不等式,得x1,把不等式的解集在数轴上表示如图,原不等式组的解集为4x1点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键22、(1)当1x3或x5时,函数的值y随x的增大而增大,P(,);(2)当3h4或h0时,函数f的值随x的增大而增大.【解析】试题分析:(1)利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数的值y随x的增大而增大(即呈上升趋势)的x的取值;如图2,作辅助线,构建对称点F和直角角三角形AQE,根据SABQ=2SABP,得QE=2PD,证明PADQAE,则,得AE=2A
25、D,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值试题解析:(1)把A(1,0)代入抛物线y=(xh)22中得:(xh)22=0,解得:h=3或h=1,点A在点B的左侧,h0,h=3,抛物线l的表达式为:y=(x3)22,抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1x3或x5时,函数的值y随x的增大而增大;如图2,作PDx轴于点D,延长PD交抛物线l于点F,作QEx轴于E,则PDQE,由对称性得:DF=PD,SABQ=2SA
26、BP,ABQE=2ABPD,QE=2PD,PDQE,PADQAE,AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,(1+a3)22),点F、Q在抛物线l上,PD=DF=(1+a3)22,QE=(1+2a3)22,(1+2a3)22=2(1+a3)22,解得:a=或a=0(舍),P(,);(2)当y=0时,(xh)22=0,解得:x=h+2或h2,点A在点B的左侧,且h0,A(h2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,3h4,由图象可知:图象f点B的右侧时,函数f的值随x的
27、增大而增大,即:h+22,h0,综上所述,当3h4或h0时,函数f的值随x的增大而增大考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.23、25%【解析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【详解】设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=25%,x2=(不符合题意,舍去)答:这两年中获奖人次的年平均年增长率为2
28、5%24、这种测量方法可行,旗杆的高为21.1米【解析】分析:根据已知得出过F作FGAB于G,交CE于H,利用相似三角形的判定得出AGFEHF,再利用相似三角形的性质得出即可详解:这种测量方法可行 理由如下:设旗杆高AB=x过F作FGAB于G,交CE于H(如图)所以AGFEHF因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.11.1=2,AG=x1.1由AGFEHF,得,即,所以x1.1=20,解得x=21.1(米)答:旗杆的高为21.1米点睛:此题主要考查了相似三角形的判定与性质,根据已知得出AGFEHF是解题关键25、(1)证明见解析;(2)1【解析】试题分析:(1)根据垂
29、直的定义可得CEB=90,然后根据角平分线的性质和等腰三角形的性质,判断出1=D,从而根据平行线的判定得到CEBD,根据平行线的性质得DBA=CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得CE试题解析:(1)证明:CEAB,CEB=90CD平分ECB,BC=BD,1=2,2=D1=DCEBDDBA=CEB=90AB是O的直径,BD是O的切线(2)连接AC,AB是O直径,ACB=90CEAB,可得CE在RtCEB中,CEB=90,由勾股定理得 BC=BD=BC=201=D,EFC =BFD,EFCBFD1220BF=1考点:切线的判定,相似三角形,勾股定理26、 (1)m=
30、20,n=8;55;(2) 答案见解析.【解析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.【详解】(1)m=8025%=20,n=80-20-44-4-2-2=8,空气质量等级为“良”的天数占:100%=55%.故答案为20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:【点睛】此题考查了条形图与扇形图的知识读懂统计图,从统计图中得到必要的信息是解决问题的关键27、(1)证明见解析;(2)EAD是等腰三角形证明见解析;(3). 【解析】试题分析:(1)连接OG,则由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邢台学院《统计分析工具》2022-2023学年第一学期期末试卷
- 邢台学院《人文地理学综合实践》2023-2024学年第一学期期末试卷
- 2024至2030年应急疏散指示灯项目投资价值分析报告
- 2024至2030年双室真空油炸机项目投资价值分析报告
- 建筑工程中的劳务派遣合同细则
- 老旧小区改造物业管理合同
- 2024至2030年中国速溶麦片行业投资前景及策略咨询研究报告
- 个人汽车出租与承租协议书
- 学校校园物业管理制度要点
- 医院患者管理系统建设方案
- 档案工作管理情况自查表
- 竖向设计图课件
- WinCCflexible的传送操作HMI设备设置入门
- 三宝屯污水处理厂三期改扩建工程项目环境影响报告
- 大学生创新创业教育智慧树知到答案章节测试2023年湖南铁路科技职业技术学院
- 机电一体化说专业比赛
- (国开电大)专科《市场营销学》网上形考任务4试题及答案
- 2023年海口市事业单位招聘考试《公共基础知识》题库及答案解析
- 《航空运输地理》课程标准
- pcs-9611d-x说明书国内中文标准版
- 皇城相府(精美PPT)
评论
0/150
提交评论