


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,圆O是等边三角形内切圆,则BOC的度数是()A60B100C110D1202如图,在矩形ABCD中,AD=1,AB1,AG平分BAD,分别过点B,C作BEAG 于点E,CFAG于点F,则AEGF的值为( )A1B2C32D3五个新篮球
2、的质量(单位:克)分别是+5、3.5、+0.7、2.5、0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数仅从轻重的角度看,最接近标准的篮球的质量是()A2.5B0.6C+0.7D+54点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1x20 x3,则y1,y2,y3的大小关系是()Ay1y2y3By2y3y1Cy3y2y1Dy2y1y35如果关于x的方程x2x+1=0有实数根,那么k的取值范围是()Ak0Bk0Ck4Dk46如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD7如图,已知,用尺规作图作第一步
3、的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )A以点为圆心,长为半径画弧,与第1步所画的弧相交于点B以点为圆心,长为半径画弧,与第1步所画的弧相交于点C以点为圆心,长为半径画弧,与第1步所画的弧相交于点D以点为圆心,长为半径画弧,与第1步所画的弧相交于点8a0,函数y与yax2+a在同一直角坐标系中的大致图象可能是()ABCD9四组数中:1和1;1和1;0和0;和1,互为倒数的是()ABCD10二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()ABCD二、填空题(本大题共6个小
4、题,每小题3分,共18分)11如图,在RtABC中,AC=4,BC=3,将RtABC以点A为中心,逆时针旋转60得到ADE,则线段BE的长度为_12如图,如果四边形ABCD中,ADBC6,点E、F、G分别是AB、BD、AC的中点,那么EGF面积的最大值为_13如图,在直角坐标系中,A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作A的切线,切点为Q,则切线长PQ的最小值是_14某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是_15若关于x的方程有两
5、个相等的实数根,则m的值是_16观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是_三、解答题(共8题,共72分)17(8分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值18(8分)已知a2+2a=9,求的值19(8分)如图,在四边形ABCD中,ABC90,AB3,BC
6、4,CD10,DA5,求BD的长20(8分)如图,平面直角坐标系中,将含30的三角尺的直角顶点C落在第二象限其斜边两端点A、B分别落在x轴、y轴上且AB12cm(1)若OB6cm求点C的坐标;若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm21(8分)在矩形ABCD中,两条对角线相交于O,AOB=60,AB=2,求AD的长22(10分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理(1)填空_,_,数学成绩的中位数所在的等级_(2)如果该校有1200名学生参加了本次
7、模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数如下分数段整理样本等级等级分数段各组总分人数48435741712根据上表绘制扇形统计图23(12分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;(2)若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概
8、率24如图1,在四边形ABCD中,AB=ADB+ADC=180,点E,F分别在四边形ABCD的边BC,CD上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1 图2 图3(1)思路梳理将ABE绕点A逆时针旋转至ADG,使AB与AD重合.由B+ADC=180,得FDG=180,即点F,D,G三点共线. 易证AFG ,故EF,BE,DF之间的数量关系为 ;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在ABC中,BAC=
9、90,AB=AC,点D,E均在边BC上,且DAE=45. 若BD=1,EC=2,则DE的长为 .参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】由三角形内切定义可知OB、OC是ABC、ACB的角平分线,所以可得到关系式OBC+OCB=(ABC+ACB),把对应数值代入即可求得BOC的值【详解】解:ABC是等边三角形,A=ABC=ACB=60,圆O是等边三角形内切圆,OB、OC是ABC、ACB的角平分线,OBC+OCB=(ABC+ACB)=(18060)=60,BOC=18060=120,故选D【点睛】此题主要考查了三角形的内切圆与内心以及切线的性质关键是要知道关系式OBC+
10、OCB=(ABC+ACB)2、D【解析】设AE=x,则AB=2x,由矩形的性质得出BAD=D=90,CD=AB,证明ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x -1,CG=2GF,得出GF,即可得出结果.【详解】设AE=x,四边形ABCD是矩形,BAD=D=90,CD=AB,AG平分BAD,DAG=45,ADG是等腰直角三角形,DG=AD=1,AG=2AD=2,同理:BE=AE=x, CD=AB=2x,CG=CD-DG=2x -1,同理: CG=2GF,FG=22AE-GF=x-(x-22)=2故选D.【点睛】本题考查了矩形的性质、等腰直角三
11、角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.3、B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,53.52.50.70.6,最接近标准的篮球的质量是-0.6,故选B【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键4、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1x20 x1,判断出三点所在的象限,再根据函数的增减性即可得出结论【详解】反比例函数y=中,k=1
12、0,此函数图象的两个分支在一、三象限,x1x20 x1,A、B在第三象限,点C在第一象限,y10,y20,y10,在第三象限y随x的增大而减小,y1y2,y2y1y1故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键5、D【解析】由被开方数非负结合根的判别式0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围【详解】关于x的方程x2-x+1=0有实数根,解得:k1故选D【点睛】本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键6、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况
13、数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=7、D【解析】根据作一个角等于已知角的作法即可得出结论【详解】解:用尺规作图作AOC=2AOB的第一步是以点O为圆心,以任意长为半径画弧,分别交OA、OB于点E、F,第二步的作图痕迹的作法是以点F为圆心,EF长为半径画弧故选:D【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键8、D【解析】分a0和a0两种情况分类讨论即可确定正确的选项【详解】当a0时,函
14、数y 的图象位于一、三象限,yax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a0时,函数y的图象位于二、四象限,yax2+a的开口向上,交y轴的负半轴,D选项符合;故选D【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大9、C【解析】根据倒数的定义,分别进行判断即可得出答案【详解】1和1;11=1,故此选项正确;-1和1;-11=-1,故此选项错误;0和0;00=0,故此选项错误;和1,-(-1)=1,故此选项正确;互为倒数的是:,故选C【点睛】此题主要考查了倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个
15、数互为倒数10、C【解析】试题分析:二次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次函数的图象;3反比例函数的图象二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】连接CE,作EFBC于F,根据旋转变换的性质得到CAE=60,AC=AE,根据等边三角形的性质得到CE=AC=4,ACE=60,根据直角三角形的性质、勾股定理计算即可【详解】解:连接CE,作EFBC于F,由旋转变换的性质可知,CAE=60,AC=AE,ACE是等边三角形,CE=
16、AC=4,ACE=60,ECF=30,EF=CE=2,由勾股定理得,CF= = ,BF=BC-CF= ,由勾股定理得,BE= ,故答案为:【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键12、4.1【解析】取CD的值中点M,连接GM,FM首先证明四边形EFMG是菱形,推出当EFEG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论【详解】解:取CD的值中点M,连接GM,FMAGCG,AEEB,GE是ABC的中位线EGBC,同理可证:FMBC,EFGMAD,AD
17、BC6,EGEFFMMG3,四边形EFMG是菱形,当EFEG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,EGF的面积的最大值为S四边形EFMG4.1,故答案为4.1【点睛】本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键13、2 【解析】分析:因为BP,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用APCDOC求出AP的长即可求解.详解:如图,作AP直线yx3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.A的坐标为(1,0),D(0,3),C(4,0
18、),OD3,AC5,DC5,ACDC,在APC与DOC中,APCCOD90,ACPDCO,ACDC,APCDOC,APOD3,PB2故答案为2.点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.14、S=1n-1【解析】观察可得,n=2时,S=1;n=3时,S=1+(3-2)1=12;n=4时,S=1+(4-2)1=18;所以,S与n的关系是:S=1+(n-2)1=1n-1故答案为S=1n-1【点睛】本题是一道找规律的题目,这类题型在中考中经常出现对于找规
19、律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的15、m=- 【解析】根据题意可以得到=0,从而可以求得m的值【详解】关于x的方程有两个相等的实数根,=,解得:.故答案为.16、【解析】由图形可得:三、解答题(共8题,共72分)17、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45,得到DAC=BACBAH=30,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD
20、=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A(2,1)代入y=,得k=21=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,B点坐标为(1
21、,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45,BAC=75,DAC=BACBAH=30,tanDAC=tan30=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得 ,解得 ,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t2),直线lx轴,与AC相交于点N,N点的横坐标为t,N点坐标为(t, t1),MN=(t1)=t+1,SCMN=t(t+1)=t2+t+=(t)2+(0t2),a=0,当t=时,S有最大值,最大值为18、,【解析】试题分析:原式第
22、二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值试题解析:= = =, a2+2a=9,(a+1)2=1原式=19、BD2.【解析】作DMBC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出ACD是直角三角形,ACD=90,证出ACB=CDM,得出ABCCMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可【详解】作DMBC,交BC延长线于M,连接AC,如图所示:则M90,DCM+C
23、DM90,ABC90,AB3,BC4,AC2AB2+BC225,CD10,AD ,AC2+CD2AD2,ACD是直角三角形,ACD90,ACB+DCM90,ACBCDM,ABCM90,ABCCMD,CM2AB6,DM2BC8,BMBC+CM10,BD,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出ACD是直角三角形是解决问题的关键20、(1)点C的坐标为(3,9);滑动的距离为6(1)cm;(2)OC最大值1cm.【解析】试题分析:(1)过点C作y轴的垂线,垂足为D,根据30的直角三角形的性质解答即可;设点A向右
24、滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CEx轴,CDy轴,垂足分别为E,D,证得ACEBCD,利用相似三角形的性质解答即可试题解析:解:(1)过点C作y轴的垂线,垂足为D,如图1:在RtAOB中,AB=1,OB=6,则BC=6,BAO=30,ABO=60,又CBA=60,CBD=60,BCD=30,BD=3,CD=3,所以点C的坐标为(3,9);设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1cosBAO=1cos30=6AO=6x,BO=6+x,AB=AB=1在AO B中,由
25、勾股定理得,(6x)2+(6+x)2=12,解得:x=6(1),滑动的距离为6(1);(2)设点C的坐标为(x,y),过C作CEx轴,CDy轴,垂足分别为E,D,如图3:则OE=x,OD=y,ACE+BCE=90,DCB+BCE=90,ACE=DCB,又AEC=BDC=90,ACEBCD,即,y=x,OC2=x2+y2=x2+(x)2=4x2,当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当CB旋转到与y轴垂直时此时OC=1,故答案为1考点:相似三角形综合题21、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由AOB=60可得AOB
26、是等边三角形,从而得到OB=OA=2,则BD=4,最后在RtABD中,由勾股定理可解得AD的长.试题解析:四边形ABCD是矩形,OA=OB=OD,BAD=90,AOB=60,AOB是等边三角形,OB=OA=2, BD=2OB=4,在RtABD中AD=.22、(1)6;8;B;(2)120人;(3)113分【解析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数【详解】(1)本次抽查的学生有:(人),数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:(分),即A等级学生的数学成绩的平均分是113分【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答23、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工方案:道路与地坪拆除工程
- 智能预测系统在化纤生产中的应用-洞察及研究
- 探索和完善科研过程中的容错机制以促进创新活力的策略研究
- 供暖企业热源管理办法
- 颜料制备技术:光子晶体结构色颜料的研发与应用
- 交通安全教育课程设计与实践创新研究
- 绝经前期女性骨质疏松风险因素及其干预策略研究
- 网络电影表达的艺术创新:多模态建构、文化转译与地域协同研究
- 农安供热采暖管理办法
- 探讨在线固相萃取技术在净化过程中的应用
- 2025年辽宁、吉林、黑龙江、内蒙古四省高考物理真题(含答案)
- DB4201∕T 694-2024 押运行业安全生产标准化基本规范
- 装载机司机安全培训试题及答案
- 2025年中国拉臂式车厢可卸式垃圾车市场调查研究报告
- 2025年春季学期班主任工作总结【课件】
- 2025年天津市中考语文试卷(含标准答案)
- 保险品质管理制度
- 2025年辽宁高考地理试卷真题答案详解讲评课件(黑龙江吉林内蒙古适用)
- 全国中小学教师职业道德知识竞赛80题及答案
- 2023CSCO食管癌诊疗指南
- 2024年四川省资中县事业单位公开招聘教师岗笔试题带答案
评论
0/150
提交评论