信号与系统奥本海默原版第二章-课件_第1页
信号与系统奥本海默原版第二章-课件_第2页
信号与系统奥本海默原版第二章-课件_第3页
信号与系统奥本海默原版第二章-课件_第4页
信号与系统奥本海默原版第二章-课件_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2 Linear Time-Invariant Systems2.1 Discrete-time LTI system: The convolution sum2.1.1 The Representation of Discrete-time Signals in Terms of Impulses2. Linear Time-Invariant SystemsIf xn=un, then 1- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2- 2 Linear Time-Invariant Syste 2 Lin

2、ear Time-Invariant Systems2.1.2 The Discrete-time Unit Impulse Response and the Convolution Sum Representation of LTI Systems(1) Unit Impulse(Sample) Response LTIxn=nyn=hn Unit Impulse Response: hn 3- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Convolution Sum of LTI System LTIx

3、nyn=?Solution:Question: n hnn-k hn-kxkn-k xk hn-k4- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems5- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems6- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems( Convolution Sum )Soor yn = xn * hn(3) Calculation of Conv

4、olution SumTime Inversal: hk h-kTime Shift: h-k hn-kMultiplication: xkhn-kSumming: Example 2.1 2.2 2.3 2.4 2.57- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2 Continuous-time LTI system: The convolution integral2.2.1 The Representation of Continuous-time Signals in Terms of Impuls

5、esDefine We have the expression: Therefore: 8- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems9- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systemsor 10- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2.2 The Continuous-time Unit impulse Response and the conv

6、olution Integral Representation of LTI Systems(1) Unit Impulse Response LTIx(t)=(t)y(t)=h(t)(2) The Convolution of LTI System LTIx(t)y(t)=?11- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsA. LTI(t)h(t)x(t)y(t)=?Because of So,we can get ( Convolution Integral ) or y(t) = x(t) * h(t) 1

7、2- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsB. or y(t) = x(t) * h(t) LTI(t)h(t)(t) h(t)( Convolution Integral ) 13- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems14- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(3) Computation of Convolution Integra

8、l Time Inversal: h() h(- )Time Shift: h(-) h(t- )Multiplication: x()h(t- )Integrating: Example 2.6 2.815- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3 Properties of Linear Time Invariant SystemConvolution formula:h(t)x(t)y(t)=x(t)*h(t)hnxnyn=xn*hn16- 2 Linear Time-Invariant Syste

9、 2 Linear Time-Invariant Systems2.3.1 The Commutative PropertyDiscrete time: xn*hn=hn*xnContinuous time: x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)17- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.2 The Distributive PropertyDiscrete time: xn*h1n+h2n=xn*h1n+xn*

10、h2nContinuous time: x(t)*h1(t)+h2(t)=x(t)*h1(t)+x(t)*h2(t)h1(t)+h2(t)x(t)y(t)=x(t)*h1(t)+h2(t)h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)Example 2.1018- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.3 The Associative PropertyDiscrete time: xn*h1n*h2n=xn*h1n*h2nContinuous time: x(t)*h

11、1(t)*h2(t)=x(t)*h1(t)*h2(t)h1(t)*h2(t)x(t)y(t)=x(t)*h1(t)*h2(t)h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)19- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.4 LTI system with and without MemoryMemoryless system: Discrete time: yn=kxn, hn=kn Continuous time: y(t)=kx(t), h(t)=k (t)k (t) x(t)

12、y(t)=kx(t)=x(t)*k(t)k n xnyn=kxn=xn*knImply that: x(t)* (t)=x(t) and xn* n=xn20- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.5 Invertibility of LTI systemOriginal system: h(t)Reverse system: h1(t)(t) x(t)x(t)*(t)=x(t)So, for the invertible system: h(t)*h1(t)=(t) or hn*h1n=nh(t)

13、x(t)x(t)h1(t) Example 2.11 2.1221- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.6 Causality for LTI systemDiscrete time system satisfy the condition: hn=0 for n0Continuous time system satisfy the condition: h(t)=0 for t022- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Sy

14、stems2.3.7 Stability for LTI system Definition of stability: Every bounded input produces a bounded output. Discrete time system:If |xn|B, the condition for |yn|A is23- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsContinuous time system:If |x(t)|B, the condition for |y(t)|A isExample

15、 2.1324- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.8 The Unit Step Response of LTI systemDiscrete time system:hn nhnunsn=un*hnContinuous time system:h(t) (t)h(t)u(t)s(t)=u(t)*h(t)25- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4 Causal LTI Systems Described

16、by Differential and Difference EquationDiscrete time system: Differential EquationContinuous time system: Difference Equation26- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.1 Linear Constant-Coefficient Differential EquationA general Nth-order linear constant-coefficient differe

17、ntial equation:orand initial condition: y(t0), y(t0), , y(N-1)(t0) ( N values )27- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.2 Linear Constant-Coefficient Difference EquationA general Nth-order linear constant-coefficient difference equation:orand initial condition: y0, y-1, ,

18、 y-(N-1) ( N values )Example 2.1528- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.3 Block Diagram Representations of First-order Systems Described by Differential and Difference Equation(1) Dicrete time system Basic elements: A. An adder B. Multiplication by a coefficient C. An unit delay29- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsBasic elements: 30- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsExample: yn+ayn-1=bxn 31- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Contin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论