版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1已知矩形ABCD,下列结论错误的是()AABDCBACBDCACBDDA+C1802为了得到函数的图象,可以将函数的图象( )A先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度B先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度C先关于轴对称,再向右平移1个单位长度,最后再向上平移
2、3个单位长度D先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度3如图,AC是O的直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A3cmB cmC2.5cmD cm4如图,O的弦ABOC,且OD2DC,AB,则O的半径为( )A1B2C3D95阅读理解:已知两点,则线段的中点的坐标公式为:,如图,已知点为坐标原点,点,经过点,点为弦的中点若点,则有满足等式:设,则满足的等式是()ABCD6如图是某个几何体的三视图,则该几何体是( )A长方体B圆锥C圆柱D三棱柱7如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按
3、顺时针方向旋转 90,得到线段 AB ,则点 B 的对应点 B的坐标是( )A(-4 , 1)B( 1, 2)C(4 ,- 1)D(1 ,- 2)8如图,在RtABC中,AC=3,AB=5,则cosA的值为( )ABCD9下列图形中为中心对称图形的是( )A等边三角形B平行四边形C抛物线D五角星10二次函数的图象如图所示,下列说法中错误的是()A函数的对称轴是直线x=1B当x2时,y随x的增大而减小C函数的开口方向向上D函数图象与y轴的交点坐标是(0,-3)二、填空题(每小题3分,共24分)11如图是甲、乙两人同一地点出发后,路程随时间变化的图象(1)甲的速度_乙的速度(大于、等于、小于)(2
4、)甲乙二人在_时相遇;(3)路程为150千米时,甲行驶了_小时,乙行驶了_小时12已知为锐角,且,那么等于_13抛物线经过点,则这条抛物线的对称轴是直线_14如图,一艘轮船从位于灯塔的北偏东60方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45方向上的处,这时轮船与小岛的距离是_海里15将二次函数化成的形式,则_16某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_.17如图,已知AOB30,在射线OA上取点O1,以点O1为圆心的圆与OB相切;在射线O1A上取点O2,以点O2为
5、圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以点O3为圆心,O3O2为半径的圆与OB相切,若O1的半径为1,则On的半径是_18如图,在的矩形方框内有一个不规则的区城(图中阴影部分所示),小明同学用随机的办法求区域的面积若每次在矩形内随机产生10000个点,并记录落在区域内的点的个数,经过多次试验,计算出落在区域内点的个数的平均值为6700个,则区域的面积约为_三、解答题(共66分)19(10分)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFEB,(1)求证:ADFDEC(2)若AB4,AD3,AE3,求AF的长.20(6分)如图
6、,在菱形ABCD中,作于E,BFCD于F,求证:21(6分)如图,二次函数y=(x2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b(x2)2+m的x的取值范围22(8分)如图,AB为O直径,点D为AB下方O上一点,点C为弧ABD中点,连接CD,CA(1)若ABD,求BDC(用表示);(2)过点C作CEAB于H,交AD于E,CAD,求ACE(用表示);(3)在(2)的条件下,若OH5,AD24,求线段DE的长23(8分)如图,在平面
7、直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由24(8分)如图,抛物线yx2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MNy轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点
8、,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由25(10分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点,交于点.(1)求证:是的切线;(2)连接,若,求圆心到的距离及的长.26(10分)如图,以为直径作,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)若,求的半径.参考答案一、选择题(每小题3分,共30分)1、C【分析】由矩形的性质得出ABDC,ACBD,ABCD90,则A+C180,只有ABBC时,ACBD,即可得出结果【详解】四边形ABCD是矩形,ABDC,ACBD,ABCD90,A+C180,只有A
9、BBC时,ACBD,A、B、D不符合题意,只有C符合题意,故选:C 【点睛】此题主要考查了矩形的性质的运用,熟练掌握矩形的性质是解题的关键2、A【分析】先求出两个二次函数的顶点坐标,然后根据顶点坐标即可判断对称或平移的方式.【详解】的顶点坐标为的顶点坐标为 点先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度可得到点故选A【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.3、D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可详解:连接OB,AC是O的直径,弦BDAO于E,BD=1cm,AE=2
10、cm在RtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,OB=3+2=5,EC=5+3=1在RtEBC中,BC=OFBC,OFC=CEB=90C=C,OFCBEC,即,解得:OF= 故选D点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长4、C【分析】根据垂径定理可得AD=AB,由OD2DC可得OD=OC=OA,利用勾股定理列方程求出OA的长即可得答案.【详解】O的弦ABOC,AB=,AD=AB=,OD2DC,OA=OC,OC=OD+DC,OD=OC=OA,OA2=(OA)2+()2,解得:OA=3,(负值舍去),故选:C.【点睛】本题主要考查垂径定理及
11、勾股定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧;熟练掌握垂径定理是解题关键.5、D【解析】根据中点坐标公式求得点的坐标,然后代入满足的等式进行求解即可.【详解】点,点,点为弦的中点,又满足等式:,故选D【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式6、B【分析】根据几何体的三视图,可判断出几何体.【详解】解:主视图和左视图是等腰三角形此几何体是锥体俯视图是圆形这个几何体是圆锥故选B.【点睛】此题主要考查了几何体的三视图,关键是利用主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状7、D【解析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整
12、数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180【详解】将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90,则B对应坐标为(1,-2),故选D【点睛】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键8、B【分析】根据余弦的定义计算即可【详解】解:在RtABC中,;故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角
13、A的邻边b与斜边c的比叫做A的余弦是解题的关键9、B【分析】根据中心对称图形的概念求解【详解】A、等边三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、抛物线不是中心对称图形,故本选项错误;D、五角星不是中心对称图形,故本选项错误故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【解析】利用二次函数的解析式与图象,判定开口方向,求得对称轴,与y轴的交点坐标,进一步利用二次函数的性质判定增减性即可【详解】解:y=x2-2x-3=(x-1)2-4,对称轴为直线x=1,又a=10,开口向上,x1时,y随x的
14、增大而减小,令x=0,得出y=-3,函数图象与y轴的交点坐标是(0,-3)因此错误的是B故选:B【点睛】本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键二、填空题(每小题3分,共24分)11、 (1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用12、【分析】根据特殊角的三角函数值即可求出答案【详解】故答案为:【点睛】本题主要考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键13、【分析】根据抛物线的轴对称性,即可得到答案【详解】抛物线经过
15、点,且点,点关于直线x=1对称,这条抛物线的对称轴是:直线x=1故答案是:【点睛】本题主要考查二次函数的图象与性质,掌握抛物线的轴对称性,是解题的关键14、(30+30)【分析】过点C作CDAB,则在RtACD中易得AD的长,再在RtBCD中求出BD,相加可得AB的长【详解】解:过C作CDAB于D点,由题意可得,ACD=30,BCD=45,AC=1在RtACD中,cosACD=,AD=AC=30,CD=ACcosACD=1,在RtDCB中,BCD=B=45,CD=BD=30,AB=AD+BD=30+30答:此时轮船所在的B处与小岛A的距离是(30+30)海里故答案为:(30+30)【点睛】此题
16、主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线15、【分析】利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式【详解】解:,故答案为:【点睛】本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:正确利用配方法把一般式化为顶点式是解题的关键16、20%【分析】根据增长(降低)率公式可列出式子.【详解】设月平均增长率为x.根据题意可得:.解得:.所以增长率为20%.故答案为:20%.【点睛】本题主要考查了一元二次方程的应用,记住增长率公式很重要.17、2n1【分析】作O1C、O2D、O3E分别
17、OB,易找出圆半径的规律,即可解题【详解】解:作O1C、O2D、O3E分别OB,AOB30,OO12CO1,OO22DO2,OO32EO3,O1O2DO2,O2O3EO3,圆的半径呈2倍递增,On的半径为2n1CO1,O1的半径为1,O10的半径长2n1,故答案为:2n1【点睛】本题考查了圆切线的性质,考查了30角所对直角边是斜边一半的性质,本题中找出圆半径的规律是解题的关键18、8.04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值【详解】解:由题意,在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,概率P=,43的矩形面积为12,区域A的面积的估计值
18、为:0.6712=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题三、解答题(共66分)19、(1)见解析(2)AF=2【详解】(1)证明:四边形ABCD是平行四边形ADBC ABCDADF=CED B+C=180AFE+AFD=,AFE=BAFD=CADFDEC(2)解:四边形ABCD是平行四边形ADBC CD=AB=4又AEBC AEAD在RtADE中,DE= ADFDECAF=20、见解析【分析】由菱形的性质可得,然后根据角角边判定,进而得到.【详解】证明:菱形ABCD,在与中,【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性
19、质得到全等条件是解题的关键.21、(1)二次函数解析式为y=(x2)21;一次函数解析式为y=x1(2)1x2【分析】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式(2)根据图象和A、B的交点坐标可直接求出kx+b(x-2)2+m的x的取值范围【详解】解:(1)将点A(1,0)代入y=(x2)2+m得,(12)2+m=0,解得m=1二次函数解析式为y=(x2)21当x=0时,y=21=3,C点坐标为(0,3)二次函数y=(x2)21的对称轴为x=2, C和B关于对称轴对称,B点坐标为(2,3
20、)将A(1,0)、B(2,3)代入y=kx+b得,解得一次函数解析式为y=x1(2)A、B坐标为(1,0),(2,3),当kx+b(x2)2+m时,直线y=x1的图象在二次函数y=(x2)21的图象上方或相交,此时1x222、(1)BDC=;(2)ACE=;(3)DE=【分析】(1)连接AD,设BDC,CAD,则CABBDC,证明DAB,90,ABD2,得出ABD2BDC,即可得出结果;(2)连接BC,由直角三角形内角和证明ACEABC,由点C为弧ABD中点,得出ADCCADABC,即可得出结果;(3)连接OC,证明COBABD,得出OCHABD,则,求出BD2OH10,由勾股定理得出AB26
21、,则AO13,AHAOOH18,证明AHEADB,得出,求出AE,即可得出结果【详解】(1)连接AD,如图1所示:设BDC,CAD,则CABBDC,点C为弧ABD中点,ADCCAD,DAB,AB为O直径,ADB90,+90,90,ABD90DAB90()9090+2,ABD2BDC,BDCABD;(2)连接BC,如图2所示:AB为O直径,ACB90,即BAC+ABC90,CEAB,ACE+BAC90,ACEABC,点C为弧ABD中点,ADCCADABC,ACE;(3)连接OC,如图3所示:COB2CAB,ABD2BDC,BDCCAB,COBABD,OHCADB90,OCHABD,BD2OH10
22、,AB26,AO13,AHAO+OH13+518,EAHBAD,AHEADB90,AHEADB,即,AE,DEADAE24【点睛】本题考查了圆周角定理、相似三角形的判定和性质、三角形内角和定理、勾股定理等知识;正确作出辅助线是解题的关键23、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、为顶点的四边形是平行四边形,,点坐标为,【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平
23、行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称,当点、在同一直线上时,最小抛物线解析式为,C(0,-6),设直线解析式为,解得:直线:,故答案为:(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点的四边形是平行四边形设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y=N(,)
24、;点坐标为(,),(,),(,)【点睛】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键24、 (1) yx24x+1;(2);(1)见解析.【分析】(1)利用待定系数法进行求解即可;(2)设点M的坐标为(m,m24m+1),求出直线BC的解析,根据MNy轴,得到点N的坐标为(m,m+1),由抛物线的解析式求出对称轴,继而确定出1m1,用含m的式子表示出MN,继而利用二次函数的性质进行求解即可;(1)分AB为边或为对角线进行讨论即可求得.【详解】(1)将点B(1,0)、C(0,1)代入抛物线yx2+bx+c中,得:,解得:,故抛物线
25、的解析式为yx24x+1;(2)设点M的坐标为(m,m24m+1),设直线BC的解析式为ykx+1,把点B(1,0)代入ykx+1中,得:01k+1,解得:k1,直线BC的解析式为yx+1,MNy轴,点N的坐标为(m,m+1),抛物线的解析式为yx24x+1(x2)21,抛物线的对称轴为x2,点(1,0)在抛物线的图象上,1m1线段MNm+1(m24m+1)m2+1m(m)2+,当m时,线段MN取最大值,最大值为;(1)存在点F的坐标为(2,1)或(0,1)或(4,1)当以AB为对角线,如图1,四边形AFBE为平行四边形,EAEB,四边形AFBE为菱形,点F也在对称轴上,即F点为抛物线的顶点,F点坐标为(2,1);当以AB为边时,如图2,四边形AFBE为平行四边形,EFAB2,即F2E2,F1E2,F1的横坐标为0,F2的横坐标为4,对于yx24x+1,当x0时,y1;当x4时,y1616+11,F点坐标为(0,1)或(4,1),综上所述,F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年带家私家电房产买卖合同(三篇)
- 2024年大学学习部工作计划样本(三篇)
- 2024年小学教师个人总结样本(二篇)
- 2024年各种公共场所的卫生管理制度样本(二篇)
- 2024年工厂质检员岗位职责说明范本(二篇)
- 2024年半年工作总结(四篇)
- 2024年员工入股协议范本(二篇)
- 2024年学校美术教学工作计划模版(四篇)
- 2024年卫生管理制度制度(四篇)
- 【《房建工程施工管理中精细化管理运用探析》3200字】
- 妇科疾病健康教育宣教(3篇模板)
- 2024中国融通融通资源开发招聘笔试冲刺题(带答案解析)
- 2024年安徽广播电视台招聘30人历年重点基础提升难、易点模拟试题(共500题)附带答案详解
- 2024河南郑州热力集团限公司招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 走近核科学技术智慧树知到期末考试答案章节答案2024年兰州大学
- 陇西中医药产业园规划方案
- 维卓:2024全球MOBA游戏市场洞察报告
- 六年级毕业专项复习一拼音
- 刍议农村雷电灾害的现状及防雷措施
- 猪肉配送服务方案
- 化验室环保培训课件
评论
0/150
提交评论