版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一
2、并交回。一、选择题(每小题3分,共30分)1如图,AB是O的直径,CD是O的弦,如果ACD35,那么BAD等于()A35B45C55D652关于的二次方程的一个根是0,则a的值是( )A1B-1C1或-1D0.53如图,四边形ABCD中,A=90,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A8B6C4D54某商务酒店客房有间供客户居住当每间房 每天定价为元时,酒店会住满;当每间房每天的定价每增加元时,就会空闲一间房如果有客户居住,宾馆需对居住的每间房每天支出元的费用当房价定为多少元时,酒店当
3、天的利润为元?设房价定为元,根据题意,所列方程是( )ABCD5如图,分别与相切于点,为上一点,则( )ABCD6下列关于x的一元二次方程没有实数根的是( )ABCD7下面四个手机应用图标中是轴对称图形的是( )ABCD8某校科技实践社团制作实践设备,小明的操作过程如下:小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB4分米;将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);用一细橡胶棒连接C、D两点(如图3);计算出橡胶棒CD的长度小明计算橡胶棒CD的长度为()A2
4、分米B2分米C3分米D3分米9如图,ABC中,C=90,AC=3,B=30,点P是BC边上的动点,则AP的长不可能是( )A3.5B4.2C5.8D710如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点M是边BC上一动点(不与B、C重合)过点M的双曲线(x0)交AB于点N,连接OM、ON下列结论:OCM与OAN的面积相等;矩形OABC的面积为2k;线段BM与BN的长度始终相等;若BM=CM,则有AN=BN其中一定正确的是()ABCD二、填空题(每小题3分,共24分)11如图,在O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若O的半径为4,则四边形A
5、BCD的面积是_12若是关于的方程的一个根,则的值为_.13如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为_km.14如图,D是反比例函数(k0)的图象上一点,过D作DEx轴于E,DCy轴于C,一次函数yx+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_15如图,反比例函数y=的图象经过ABCD对角线的交点P,已知点A,C,D在坐标轴上,BDDC,ABCD的面积为6,则k=_16如图所示的两个四边形相似,则的度数是 17如图,正方形内接于,正方形的边长为,若在这个圆面上随意抛一粒豆子,则豆
6、子落在正方形内的概率是_18抛物线y=(x-1)2-7的对称轴为直线_.三、解答题(共66分)19(10分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,求的半径20(6分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字2,1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和
7、S2时的概率21(6分)如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AEBFCGDH.(1)求证:四边形EFGH是矩形;(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DGAC,OF2cm,求矩形ABCD的面积22(8分)如图,、交于点,且平分(1)求证:;(2)若,求的长23(8分)如图1,已知抛物线yx2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP(1)求抛物线的函数表达式和点C的坐标;(2)若AQPAOC,求点P的横坐标;(3)如图2
8、,当点P位于抛物线的对称轴的右侧时,若将APQ沿AP对折,点Q的对应点为点Q,请直接写出当点Q落在坐标轴上时点P的坐标24(8分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图请结合图中的信息解答下列问题:(1)在这项调查中,共调查了_名学生; (2)请将两个统计图补充完整; (3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.25(10分)有1张看上去无差别的卡片,上面分别写着1、2、1随机抽
9、取1张后,放回并混在一起,再随机抽取1张(I)请你用画树状图法(或列表法)列出两次抽取卡片出现的所有可能结果;()求两次抽取的卡片上数字之和为偶数的概率26(10分)如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意可知、,通过与互余即可求出的值【详解】解:是的直径故选:C【点睛】本题考查了圆
10、周角定理,同弧所对的圆周角相等、并且等于它所对的圆心角的一半,也考查了直径所对的圆周角为90度2、B【分析】把代入可得,根据一元二次方程的定义可得,从而可求出的值【详解】把代入,得:,解得:,是关于x的一元二次方程,即,的值是,故选:B【点睛】本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件3、D【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可【详解】解:如图,连结DN,DE=EM,FN=FM,EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RtABD中,A=90,AD=6,AB=8,EF的最大值=BD=1故选
11、:D【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型4、D【分析】设房价定为x元,根据利润房价的净利润入住的房间数可得【详解】设房价定为x元,根据题意,得故选:D【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系5、A【分析】连接OA,OB,根据切线的性质定理得到OAP=90,OBP=90,根据四边形的内角和等于360求出AOB,最后根据圆周角定理解答【详解】解:连接OA,OB,PA,PB分别与O相切于A,B点,OAP=90,OBP=90,AOB=360-90-90-66=114,由圆
12、周角定理得,C=AOB=57,故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键6、D【解析】利用一元二次方程的根的判别式逐项判断即可.【详解】一元二次方程的根的判别式为,逐项判断如下:A、,方程有两个不相等的实数根,不符题意B、,方程有两个相等的实数根,符合题意C、,方程有两个不相等的实数根,不符题意D、,方程没有实数根,符合题意故选:D.【点睛】本题考查了一元二次方程的根的判别式,对于一般形式有:(1)当时,方程有两个不相等的实数根;(2)当时,方程有两个相等的实数根;(3)当时,方程没有实数根.7、D【分
13、析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确故选D【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键8、B【分析】连接OC,作OECD,根据垂径定理和勾股定理求解即可【详解】解:连接OC,作OECD,如图3,AB4分米,OC2分米,将圆环进行翻折使点B落在圆心O的位置,分米,在RtO
14、CE中,CE分米,分米;故选:B【点睛】此题综合运用了勾股定理以及垂径定理注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算9、D【详解】解:根据垂线段最短,可知AP的长不可小于3ABC中,C=90,AC=3,B=30,AB=1,AP的长不能大于1故选D10、A【分析】根据k的几何意义对作出判断,根据题意对作出判断,设点M的坐标(m,),点N的坐标(n,),从而得出B点的坐标,对作出判断即可【详解】解:根据k的几何意义可得:OCM的面积=OAN的面积=,故正确;矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,没有其它条件,矩形OABC的面积不一定为2k,故不正确设点M的坐标(m,)
15、,点N的坐标(n,),则B(n,),BM=n-m,BN=BM不一定等于BN,故不正确;若BM=CM,则n=2m,AN=,BN=,AN=BN,故正确;故选:A【点睛】考查反比例函数k的几何意义以及反比例函数图像上点的特征,矩形的性质,掌握矩形的性质和反比例函数k的几何意义是解决问题的前提二、填空题(每小题3分,共24分)11、【分析】作OHAB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因ABCD,所以四边形ABCD是平行四边形,由平行四边形面积公式即可得解【详解】如图,作OHAB,垂足为H,延长OH交于E,反向延
16、长OH交CD于G,交于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,OH=HE=,OG=GF=,即OH=OG,又OB=OD,RtOHBRtOGD,HB=GD,同理,可得AH=CG= HB=GDAB=CD又ABCD四边形ABCD是平行四边形,在RtOHA中,由勾股定理得:AH=AB=四边形ABCD的面积=ABGH=故答案为: 【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形12、【分析】将x=2代入方程,列出含字母a的方程,求a值即可.
17、【详解】解:x=2是方程的一个根,解得,a=.故答案为:.【点睛】本题考查方程解的定义,理解定义,方程的解是使等式成立的未知数的值是解答此题的关键.13、1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12 AB=1.1km【详解】在RtABC中,ACB=90,M为AB的中点,MC=12故答案为:1.1【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.14、-1【详解】解:的图象经过点C,C(0,1),将点C代入一次函数y=-x+m中,得m=1,y=-x+1,令y=0得x=1,A(
18、1,0),SAOC=OAOC=1,四边形DCAE的面积为4,S矩形OCDE=4-1=1,k=-1故答案为:-115、-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可详解:过点P做PEy轴于点E,四边形ABCD为平行四边形AB=CD又BDx轴ABDO为矩形AB=DOS矩形ABDO=SABCD=6P为对角线交点,PEy轴四边形PDOE为矩形面积为3即DOEO=3设P点坐标为(x,y)k=xy=3故答案为:3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质16、【解析】由两个四边形相似,根据相似多边形的对应角相等,
19、即可求得A的度数,又由四边形的内角和等于360,即可求得的度数【详解】解:四边形ABCD四边形ABCD,A=A=138,A+B+C+D=360,=360-A-B-C =360-60-138-75=87故答案为87【点睛】此题考查了相似多边形的性质此题比较简单,解题的关键是掌握相似多边形的对应角相等定理的应用17、【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可【详解】解:因为正方形的边长为2cm,则对角线的长为cm, 所以O的半径为cm,直径为2cm,O的面积为2cm2;正方形的面积为4c m2因为豆子落在圆内每一个地方
20、是均等的,所以P(豆子落在正方形ABCD内)故答案为:【点睛】此题主要考查几何概率的意义:一般地,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有P(A).18、x=1【分析】根据抛物线y=a(x-h)2+k的对称轴是x=h即可确定所以抛物线y=(x-1)2-7的对称轴【详解】解:y=(x-1)2-7对称轴是x=1故填空答案:x=1【点睛】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键三、解答题(共66分)19、(1)证明见解析;(2)的半径为2.1【分析】(1)连接,过作于点,
21、根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定理即可证出结论;(2)连接,过作于点,根据平行线的判定证出,证出,根据角平分线的性质可得,然后利用HL证出,从而得出,设的半径为,根据勾股定理列出方程即可求出结论【详解】(1)证明:如图,连接,过作于点,是底边的中点,是的切线,是的切线;(2)解:如图2,连接,过作于点点是的中点,在和中,设的半径为由勾股定理得:DK2OK2=OD2即,解得:的半径为【点睛】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性
22、质和勾股定理是解决此题的关键20、(1)答案见解析;(2),【解析】试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可解:(1)画树状图,(2)由图可知,所有可能出现的结果有12种,其中S=0的有2种,S2的有5种,P(S=0)=,P(S2)= .21、 (1)证明见解析;(2)矩形ABCD的面积为16(cm2)【解析】(1)首先证明四边形EFGH是平行四边形,然后再证明HF=EG;(2)根据题干求出矩形的边长CD和BC,然后根据矩形面积公式求得【详解】证明:四边形ABCD是矩形,OAOBOCOD.AEBFCGDH,AOAEOBBFCOCGDODH,即OEOFOGOH,四边形EF
23、GH是矩形解:G是OC的中点,GOGC.又DGAC,CDOD.F是BO中点,OF2cm,BO4cm.DOBO4cm,DC4cm,DB8cm,CB4 (cm),矩形ABCD的面积为4416 (cm2)【点睛】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等22、(1)见解析;(2)【分析】根据题意依据(AA)公理证明即可根据相似三角形性质对应边成比例求解即可【详解】证明:(1),平分,又(2)又,【点睛】本题考查了相似三角形的判定和性质23、 (1)yx2+3x+4;(1,0);(2)P的横坐标为或.(3)点P的坐标为(4,0)或(5,6)或(2,6).【分析】(1)利用
24、待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用AQPAOC得到AQ4PQ,设P(m,m2+3m+4),所以m4|4(m2+3m+4|,然后解方程4(m23m)m和方程4(m23m)m得P点坐标;(3)设P(m,m2+3m+4)(m),当点Q落在x轴上,延长QP交x轴于H,如图2,则PQm23m,证明RtAOQRtQHP,利用相似比得到QB4m12,则OQ123m,在RtAOQ中,利用勾股定理得到方程42+(123m)2m2,然后解方程求出m得到此时P点坐标;当点Q落在y轴上,易得点A、Q、P、Q所组成的四边形为正方形,利用PQPQ得到
25、|m23m|m,然后解方程m23mm和方程m23mm得此时P点坐标【详解】解:(1)把A(0,4),B(4,0)分别代入yx2+bx+c得,解得,抛物线解析式为yx2+3x+4,当y0时,x2+3x+40,解得x11,x24,C(1,0);故答案为yx2+3x+4;(1,0);(2)AQPAOC,即AQ4PQ,设P(m,m2+3m+4),m4|4(m2+3m+4|,即4|m23m|m,解方程4(m23m)m得m10(舍去),m2,此时P点横坐标为;解方程4(m23m)m得m10(舍去),m2,此时P点坐标为;综上所述,点P的坐标为(,)或(,);(3)设,当点Q落在x轴上,延长QP交x轴于H,
26、如图2,则PQ4(m2+3m+4)m23m,APQ沿AP对折,点Q的对应点为点Q,AQPAQP90,AQAQm,PQPQm23m,AQOQPH,RtAOQRtQHP,即,解得QH4m12,OQm(4m12)123m,在RtAOQ中,42+(123m)2m2,整理得m29m+200,解得m14,m25,此时P点坐标为(4,0)或(5,6);当点Q落在y轴上,则点A、Q、P、Q所组成的四边形为正方形,PQAQ,即|m23m|m,解方程m23mm得m10(舍去),m24,此时P点坐标为(4,0);解方程m23mm得m10(舍去),m22,此时P点坐标为(2,6),综上所述,点P的坐标为(4,0)或(
27、5,6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:熟练掌握待定系数法求函数解析式;能够熟练掌握相似三角形的判定和性质;能够熟练掌握一元二次方程的解法;理解折叠的性质.24、 (1)200;(2)答案见解析;(3)240人【分析】(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由105%即可求得总人数为200人;(2)由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;由80200100%可得喜欢A项运动的人所占的百分比;由30200100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;(3)由120020%可得全校喜欢“排球”运动的人数.【详解】解:(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,这次抽查的总人数为:105%=200(人);(2)由图1可知喜欢B、C、D、E四项运动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲苯精馏塔课程设计结论
- 网络营销微信课程设计
- 医院设备管理制度
- 波浪能发电装置课程设计
- 舞蹈机构古典舞课程设计
- 用天正暖通进行课程设计
- 会计师工作总结细心核算确保账目准确无误
- 数字时代品牌营销的新趋势计划
- 日常教学反思与总结计划
- 装修合同简易版
- 《两小儿辩日》教学案例:培养学生的思辨能力
- 2024年广东省普通高中学业水平考试化学试卷(修改+答案)版
- 2024年小学生中华经典诵读知识竞赛参考题库500题(含答案)
- 日拱一卒行稳致远
- 培训内驱力的课件
- 管理后台策划方案
- 人防、物防、技防工作措施
- 市场部培训课程课件
- 八年级历史上册论述题汇总
- 资产评估学教程(第八版)习题及答案 乔志敏
- 垃圾清运服务投标方案(技术方案)
评论
0/150
提交评论