高三数学最后一次模拟试题 文_第1页
高三数学最后一次模拟试题 文_第2页
高三数学最后一次模拟试题 文_第3页
高三数学最后一次模拟试题 文_第4页
高三数学最后一次模拟试题 文_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、已知是夹角为的单位向量,则向量与垂直的充要条件是. A. 1 个 B. 2 个 C. 3 个 D. 4 个 已知三棱锥,两两垂直,且长度均为6,长为2的线段的一个端点在棱上运动,另一端点在内运动(含边界),则的中点的轨迹与三棱锥所围成的几何体的体积为A. B. C. D. 二.填空题:本大题共4小题,每小题5分,共20分.11.设点在以三点构成的三角形区域(包含边界)内,则的最大值为 .12.已知三次函数有三个零点,且在点处的切线的斜率为.则 .13.一个棱长为8cm的密封正方体盒子中放一个半径为1cm的小球,无论怎样摇动盒子,则小球在盒子中不能到达的空间体积为 .14.已知集合则集合=_.1

2、5.若满足对于时有恒成立,则称函数在上是“被k限制”,若函数在区间上是“被2限制”的,则的取值范围为 .解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16(本小题满分12分)已知函数.求的最小正周期和单调增区间;设,若求的大小.17(本小题满分12分)已知正方形的边长为2,分别是边的中点在正方形内部随机取一点,求满足的概率;(2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求18.(本小题满分12分)如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,为的中点.侧(左)视图俯视图正(主)视图侧(左)视图俯视图正(主)视图(1

3、)求证:平面;(2)设垂直于,且,求点到平面的距离.(本小题满分12分)已知等比数列的首项,公比,数列前项的积记为.(1)求使得取得最大值时的值;(2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,证明:数列为等比数列.(参考数据)(本小题满分13分)已知函数在处取得极小值.(1)求的值;(2)若在处的切线方程为,求证:当时,曲线不可能在直线的下方.(本小题满分14分已知抛物线,直线截抛物线C所得弦长为.求抛物线的方程;已知是抛物线上异于原点的两个动点,记若试求当取得最小值时的最大值.临川一中2013届高三数学压轴卷(文科)参考答

4、案及评分标准选择题.D D B C C B B C B D填空题. 12. 0 13. 14.4,6 15. 解答题()由得的最小正周期为2分令得所以函数的单调增区间为6分()由得即,整理得: ,因为,所以可得,解得,10分由得,所以,12分17解:(1)这是一个几何概型所有点构成的平面区域是正方形的内部,其面积是1分满足的点构成的平面区域是以为圆心,2为半径的圆的内部与正方形内部的公共部分,它可以看作是由一个以为圆心、2为半径、圆心角为的扇形的内部与两个直角边分别为1和的直角三角形内部构成2分其面积是4分所以满足的概率为5分(2)从这八个点中,任意选取两个点,共可构成条不同的线段 6分其中长

5、度为1的线段有8条,长度为的线段有4条,长度为2的线段有6条,长度为的线段有8条,长度为的线段有2条所以所有可能的取值为7分且, , 12分18.(1)由三视图画出直观图,如图,这是一个正三棱柱,连接和,交点为,则为的中点,连接,因为为中点,所以,6分(2)过作,垂足为,连接,因为侧面垂直于底面,所以,所以在内的射影为,由,用等体积法12分19.解:(1),则当时,;当时,又的最大值是中的较大者.,因此当n=12时,最大6分(2)对进行调整,随n增大而减小,奇数项均正,偶数项均负.当n是奇数时,调整为.则,成等差数列;当n是偶数时,调整为;则,成等差数列;综上可知,中的任意相邻三项按从小到大排

6、列,总可以使其成等差数列.n是奇数时,公差;n是偶数时,公差.无论n是奇数还是偶数,都有,则,因此,数列是首项为,公比为的等比数列,12分20解:(1),由已知得3分当时,此时在单调递减,在单调递增5分,在的切线方程为,即8分当时,曲线不可能在直线的下方在恒成立,令,当,即在恒成立,所以当时,曲线不可能在直线的下方13分(21)解:(1)联立6(分)7(分)设则令9(分)当时,此时10(分)不妨设则(其中为直线的倾斜角)当且仅当,即时等号成立.故当时,的最大值为14(分)高三强化训练(二)数学(文)试题一.选择题(每小题5分,共60分)1.复数满足,则复数的实部与虚部之差为 ( )A.0 B.

7、1 C.3 D.32. 观察下列各式:51=5,52=25,53=125,54=625,=3125,=15625,=78125,则的末四位数字为 ( )A3125 B5625 C0625 D81253.数列an是等差数列,其前n项和为Sn,若平面上的三个不共线的向量满足且A、B、C三点共线,则S2012=( )A1006B1010C2006D20104.不等式且对任意都成立,则的取值范围为 ( )A B C D 5.已知向量,若,则等于( )A. B. C. D. 6. 在区间上任取两个实数,则函数在区间上有且只有一个零点的概率是 ( )A. B. C. D.7. 等比数列中,=4,函数,则

8、( )A B. C. D. 8.下图a是某市参加2012年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、Am 如A2表示身高(单位:cm)在150,155内的学生人数。图b是统计图a中身高在一定范围内学生人数的一个算法流程图。现要统计身高在160180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 ( )A9 B8 C7 D69.定义:数列,满足d为常数,我们称为等差比数列,已知在等差比数列中,则的个位数 ( ) A,3 B,4 C,6 D,810. 已知抛物线与双曲线有相同的焦点F,点A是两曲线的交点,且AF轴,则双曲线的

9、离心率为 ( )A B C D11. 的图像关于对称,且当时,(其中是的导函数),若,则的大小关系是 ( )A. B. C. D. 12.在直角坐标平面上的点集,那么的面积是 ( )A B C D二.填空题(每小题5分,共20分)13. 在ABC中,角A、B、C所对的边分别为a、b、c。若a、b、c成等差数列,则 。14.已知某个几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_cm3。15.已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为 _。16. 已知函数的对称中心为M,记函数的导函数为, 的导函数为,则有。若函数,则可求得: .三、解

10、答题,本大题共5小题,满分60分. 解答须写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 设的内角所对的边长分别为,且(1)求的值;(2)求的最大值。PABPABCDE如图,四棱锥PABCD的底面ABCD是直角梯形,DABABC90o,PA底面ABCD,PAABAD2,BC1,E为PD的中点(1) 求证:CE平面PAB;(2) 求PA与平面ACE所成角的正弦值;19.(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有

11、参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持20岁以下80045020020岁以上(含20岁)100150300()在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;()在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率20.(本小题满分12分)设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的最大值和最小值;(2)设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围。21.(本小题满分12分)已知函

12、数f(x)=ex-1-x(1)求y=f(x)在点(1,f(1)处的切线方程;(2)当x时,f(x)恒成立,求的取值范围。请从第(22)、(23)、(24)三题中任选一题做答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。22、(本小题满分10分)选修4-1:几何证明选讲 如图,是内接于O,直线切O于点,弦,与相交于点求证:;(2)若,求。23(本小题满分10分)选修44:坐标系与参数方程 以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、

13、为半径。写出直线的参数方程和圆的极坐标方程;(2)试判定直线和圆的位置关系。24. (本小题满分10分)选修45:不等式选讲已知函数。(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若存在实数使成立,求实数m的取值范围。参考答案一.选择题1.A 2.D 3.A 4. B 5. B 6. D 7. C 8 .B 9.C 10. B 11.C 12.C二.填空题13. ,14. , 15. ,16.-8046 三、解答题17.解析:(1)在中,由正弦定理及可得即,则(2)由得18题图当且仅当时,等号成立,18题图故当时,的最大值为.18.解(1). 证明:取PA的中点F,连结FE、FB

14、,则FEBC,且FE eq f(1,2)ADBC,BCEF是平行四边形,CEBF,而BF平面PAB,CE平面PAB(2) 解:取 AD的中点G,连结EG,则EGAP,问题转为求EG与平面ACE所成角的大小.又设点G到平面ACE的距离为GH,H为垂足,连结EH,则GEH为直线EG与平面ACE所成的角现用等体积法来求GH VEAGC eq f(1,3)SAGCEG eq f(1,3),又AE eq r(2),ACCE eq r(5),易求得SAEC eq f(3,2),VGAEC eq f(1,3) eq f(3,2)GHVEAGC eq f(1,3),GH eq f(2,3)在RtEHG中,si

15、nGEH eq f(2,3),即PA与平面ACE所成的角正弦值为 eq f(2,3) 19.解:(2)设所选取的人中,有人20岁以下,则,解得.6分也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A1,A2;B1,B2,B3,则从中任取2人的所有基本事件为 (A1,B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2),(B1 ,B2),(B2 ,B3),(B1 ,B3)共10个. 8分其中至少有1人20岁以下的基本事件有7个:(A1, B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,

16、B3),(A1, A2), 10分所以从中任意抽取2人,至少有1人20岁以下的概率为. 12分20. 解:(1)解法一:易知所以,设,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)(2)显然直线不满足题设条件,可设直线,联立,消去,整理得:由得:或又,又,即 故由、得或21.解(1)在处的切线方程为即 2分 (2)由已知得时,恒成立,设 由先证知当且仅当时等号成立,故,从而当即时,为增函数,又于是当时,即,时符合题意. 由可得从而当时,故当时,为减函数,又于是当时,即故不符合题意.综上可得的取值范围为 。12分选做题答案:22解:(1)在ABE和ACD中, ABE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论