版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、概率论与数理统计公式(Probabilitytheoryandmathematicalstatisticsformula)Thefirstchapterstochasticeventsandtheirprobabilitypermutationsandcombinationsformulasareusedtopickoutthepossiblenumberofpermutationsofnindividualsfrommindividuals.Thenumberofpossiblecombinationsofnindividualsselectedfrommindividuals.(2)add
2、itionandmultiplicationprincipleadditionprinciple(twomethodscancompletethematter):m+nThetwomethodcanbeusedtocompleteacertainsubject.ThefirstmethodcanbecompletedbyMmethods,andthesecondmethodcanbecompletedbynmethods.Then,thismethodcanbecompletedbym+nmethods.Multiplicationprinciple(twostepscannotdothiss
3、eparately):mxnThefirststepcanbecompletedbyMmethods,andthesecondstepcanbecompletedbynmethods,andthiscanbeaccomplishedbym*nmethodsintwoways.(3)somecommonpermutationsarerepetitiveandnonrepetitive(ordered)Oppositeevents(atleastone)Orderproblem(4)randomtestandrandomeventsifatestisrepeatedinthesameconditi
4、ons,andeachtimethetestresultsmaybemorethanone,butbeforeatestisnottoassertthatitappearswhichresults,saidthestudywasarandomizedtrial.Thepossibleoutcomeoftheexperimentiscalledarandomevent.(5)basicevents,samplespacesandeventsinatest,regardlessofthenumberofevents,canalwaysfindsuchagroupofevents,ithasthef
5、ollowingproperties:Eachtrialmustoccurandonlyoneeventinthisgroupoccurs;Anyeventismadeupofsomeoftheeventsinthisgroup.Eacheventinsuchagroupofeventsiscalledabasicevent,whichisusedtorepresenttheevent.Thewholeofthebasiceventiscalledthesamplespaceofthetest.AneventisacollectionoflettersA,B,Careusuallyparts(
6、basicevents)used,.Representinginit.Capitalevents,theyaresubsets.Isitaninevitableevent,animpossibleone?.Theprobabilityofanimpossibleeventiszero,andtheeventwithzeroprobabilityisnotnecessarilyanimpossibleevent;similarly,theprobabilityoftheinevitableevent(omega)is1,andtheeventwithprobability1isnotnecess
7、arilyaninevitableevent.(6)therelationshipbetweeneventsandoperations:IfthecomponentoftheeventAisalsoapartoftheeventB,(Ahappens,theremustbeaneventB):Ifthereisasimultaneousevent,theeventAisequivalenttotheeventB,orAequalsB:A=B.ThereisatleastoneeventinAandB:AB,orA+B.AneventthatispartofAratherthanBiscalle
8、dthedifferencebetweenAandB,denotedasA-B,andcanalsobedenotedasA-AB,oritrepresentstheeventthatBdoesnothappenwhenAoccurs.AandBoccursimultaneously:A,B,orAB.AB=?,whichmeansthatAandBcannothappenatthesametime,calledeventAincompatiblewitheventBormutuallyexclusive.Basiceventsareincompatible.-Aiscalledtheinve
9、rseeventofeventA,ortheoppositeeventofA.ItrepresentsaneventthatdoesnotoccurinA.Mutualexclusionisnotnecessarilyopposite.Operations:Bindingrate:A(BC)=(AB)C,A(B,C)=(A,B),CThedistributionrate(AB),C=(A,C)a(B,C)(A,B)C=(AC),(BC)Therateofprobability:(7)theaxiomaticdefinitionofprobabilityissetasasamplespace.F
10、orevents,thereisarealnumberP(A)foreachevent,ifthefollowingthreeconditionsaresatisfied:10=P(A=1),2degreeP(omega)=13degreesfor22incompatibleevents,.YesItisoftencalledcountable(complete)additivity.P(A)iscalledtheprobabilityofevents.theclassicalprobabilitymodelis1degrees,2degree.Setanyevent,itismadeupof
11、,thereisP(A)=geometricprobabilityiftherandomtestresultsforinfiniteuncountableandeachresultsthepossibilityofuniform,andeverybasiceventinthesamplespacecanbeusedtodescribeaboundedregion,saidthetestforrandomgeometricprobability.Aforanyevent,.Lisgeometricmeasure(length,area,volume).(10)additiveformulaP(A
12、+B)=P(A)+P(B)-P(AB)WhenP(AB)=0,P(A+B)=P(A)+P(B)subtractionformulaP(A-B)=P(A)-P(AB)WhenBA,P(A-B)=P(A)-P(B)WhenA=,P()=1-P(B)(12)conditionalprobabilitydefinesAandBaretwoevents,andP(A)0iscalledtheconditionalprobabilityofeventBoccurringineventA.Conditionalprobabilityisakindofprobability,andallprobability
13、propertiesaresuitableforconditionalprobability.Forexample,P(omega/B)=1P(/A)=1-P(B/A)(13)multiplicationformulamultiplicationformula:Moregenerally,foreventA1,A2,.An,ifP(A1A2.An-1)0,butthereis(14)independence:theindependenceofthetwoeventsEventandsatisfactionarecalledevents,andtheyareindependentofeachot
14、her.Ifeventsaremutuallyindependent,andthenthereareIfeventsareindependentofeachother,theycanbeseparatedfromeachother.Inevitableeventsandimpossibleeventsareindependentofanyevent.Ismutuallyexclusivetoanyevent.TheindependenceofmultipleeventsLetABCbethreeevents,if22independentconditionsaresatisfied,P(AB)
15、=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)AndsatisfyP(ABC)=P(A)P(B)P(C)atthesametimeSoA,B,Careindependentofeachother.Similartonevents.allprobabilityformulasetseventsatisfaction1degrees22incompatibleeachother,2degree,Isthere.(16)Biasformulasetevent,.Andsatisfaction1degree,.22incompatible,0,1,2,.,degree,
16、beI=1,2,.N.ThisformulaistheBayesformula.(,.Aprioriprobability.(,.Itisusuallycalledposteriorprobability.TheBiasformulareflectsthecausalprobabilitylaw,andmadebyShuoyinfruitinference.(17)wehavedoneatestonBernoullishypothesisEachtrialhasonlytwopossibleoutcomesthatoccurordonotoccur;Thesecondarytestisrepe
17、ated,i.e.,theprobabilityofoccurrenceishomogeneousateachtime;Eachtrialisindependent,thatis,whethereachtrialoccursornotdoesnotaffecttheoccurrenceofothertrials.ThisexperimentiscalledtheBernoullimodel,ortheheavyBernoullitest.Theprobabilityofoccurrenceofeachtrialisexpressedastheprobabilityoftheoccurrence
18、ofthesecondintheheavyBernoullitest,,。ThesecondchapterrandomvariableanditsdistributiontheprobabilityofdiscreterandomvariableisXk(k=1,2),.Andtaketheprobabilityofeachvalue,thatis,theprobabilityoftheevent(X=Xk)isP(X=xk)=pk,k=1,2,.,Theupperboundistheprobabilitydistributionordistributionlawofdiscreterando
19、mvariables.Itissometimesgivenintheformofdistributedcolumns:.Obviously,thedistributionlawshouldmeetthefollowingconditions:(1),(2).(2)thedistributiondensityofcontinuousrandomvariablesisthedistributionfunctionofrandomvariables.Ifthereisanonnegativefunction,thereisanarbitraryrealnumber,Itiscalledcontinu
20、ousrandomvariable.Probabilitydensityfunctionordensityfunction,referredtoasprobabilitydensity.Thedensityfunctionhasthefollowing4properties:degree.degree.therelationshipbetweendiscreteandcontinuousrandomvariablesThefunctionoftheintegralelementinthetheoryofcontinuousrandomvariableissimilartothatintheth
21、eoryofdiscreterandomvariables.thedistributionfunctionisarandomvariable,anditisanarbitraryrealnumberThedistributionfunctionofX,arandomvariable,isessentiallyacumulativefunction.YoucangettheprobabilitythatXfallsintotherange.Thedistributionfunctionrepresentstheprobabilityoftherandomvariablefallingintoth
22、einterval(-,x).Thedistributionfunctionhasthefollowingproperties:1degree;2degreesaremonotonedecreasingfunctions;degree,;degrees,thatis,rightcontinuous;degree.Fordiscreterandomvariables,;Forcontinuousrandomvariables,.(5)eightdistribution,0-1distributionP(X=1)=p,P(X=0)=qIntheNouritest,thetwodistributio
23、nistheprobabilityofeventoccurrence.Thenumberofeventsisarandomvariable,andifitis,itmaybevaluedas.Amongthem,Itiscalledthetwodistributionofrandomvariablesobeyingtheparameter.Rememberas.Atthattime,thisis(0-1)distribution,so(0-1)thedistributionisaspecialcaseofthetwodistribution.Thedistributionlawofrandom
24、variablesisgivenbyPoissondistribution,ThePoissondistribution,whichiscalledtherandomparameter,isdenotedasorP().ThePoissondistributionisthelimitdistributionofthetwoterms(np=,N,P).HypergeometricdistributionThehypergeometricdistributionoftherandomvariableXfollowstheparametern,N,M,denotedbyH(n,N,M).Thege
25、ometricdistribution,whereinP=0,q=1-p.ThegeometricdistributionoftherandomvariableXobeyingtheparameterpisdenotedasG(P).Thevalueoftherandomvariableisonlya,b,andthedensityfunctionisconstantonaandbOther,Therandomvariableisuniformlydistributedonaandb,andisdenotedasXU(a,B).ThedistributionfunctionisWhena=x1
26、x2=B,Xfallsintherangeof()inprobability.exponentialdistributionAmongthem,theexponentialdistributionoftherandomvariableXobeystheparameter.ThedistributionfunctionofXisRemembertheintegralformula:Thedensityfunctionofrandomvariablesisnormaldistribution,Wheretheconstantiscalledtherandomvariable,thenormaldi
27、stributionorGauss(Gauss)distributionisassumedastheparameter.Ithasthefollowingproperties:Thefigureof1degreesisaboutsymmetry;At2degrees,themaximumvaluewasthen;If,thenthedistributionfunctionis.Thenormaldistributionofparametersandtimeiscalledthenormalnormaldistribution,andthedensityfunctioniscalledasthe
28、normaldistribution,Thedistributionfunctionis.Itisanonintegralfunction,anditsfunctionvaluehasbeencompiledasatableforreference.(-x)=1-(x)and(0)=.If,then.(6)quantiletable:;Upperquartiletable:.(7)thediscretedistributionofthefunctiondistributionisknownasthedistributionoftheknowndistribution,Thedistributi
29、oncolumns(notequal)areasfollows:,Ifthereissomeequality,theprobabilityoftheadditionofthecorrespondingsumshouldbeconsidered.ByusingcontinuousprobabilitydensityfXX(x)towritethedistributionfunctionFY(y)Y=P(g(X)=y,fY)iscalculatedusingthederivationformulaofvariableupperlimitintegral(Y).Thethirdchaptertwod
30、imensionalrandomvariableanditsdistribution(1)ifthejointdistributionisdiscrete,ifallpossiblevaluesoftwo-dimensionalrandomvectors(X,Y)areatmostcountableorderedpairs(x,y),thentheyarecalleddiscreterandomvariables.Let=(X,Y)haveallpossiblevalues,andtheprobabilityofevent=isPIJ,calledThedistributionlawof=(X
31、,Y)isalsocalledthejointdistributionlawofXandY.Thejointdistributionissometimesrepresentedbythefollowingprobabilitydistributiontable:YXY1y2.Yj.X1P11p12.P1j.X2p21p22.P2j.Xipi1.Here,PIJhasthefollowingtwoproperties:PIJ=0(I,j=1,2,.);continuousfortwo-dimensionalrandomvector,ifthereisanonnegativefunction,so
32、thatanyoneofitsadjacentedgesareparalleltotheaxisoftherectangularregionD,thatis,D=(X,Y)|axb,cyx1,F(X2,y)=F(x1,y);wheny2y1,F(x,Y2)=F(x,Y1);F(x,y)isrightcontinuousforXandy,respectivelyfor.therelationshipbetweendiscreteandcontinuoustype(5)theedgedistributionofthediscreteXistheedgedistribution;Themargina
33、ldistributionofYis.TheedgedistributiondensityofcontinuousXisThemarginaldistributiondensityofYis0undertheconditionofknownX=xi,theconditionaldistributionofYvalueisdiscreteUndertheconditionofknownY=yj,theconditionaldistributionofXvalueisUndertheconditionofcontinuousY=y,theconditionaldistributiondensity
34、ofXis0;UndertheconditionofknownX=x,theconditionaldistributiondensityofYis0independentgeneraltypeF(X,Y)=FX(x)FY(y)DiscretetypeZeroindependenceContinuousf(x,y)=fX(x)fY(y)Directjudgment,sufficientandnecessarycondition:SeparablevariablesTheintervalofpositiveprobabilitydensityisrectangleTwodimensionalnor
35、maldistributionAfunctionof=0randomvariablesifX1,X2,.Xm,Xm+1,.Xnisindependentofeachother,handGarecontinuousfunctions:H(X1,X2),.Xm)andG(Xm+1),.Xn)independentofeachother.Specialcase:ifXandYareindependent,thenH(X)andG(Y)areindependent.Forexample,ifXandYareindependent,then3X+1and5Y-2areindependent.(8)the
36、distributiondensityfunctionofrandomvector(X,Y)istwodimensionaluniformdistributionWhereSDistheareaoftheregionD,itiscalled(X,Y)obeystheuniformdistributiononD,andisdenotedas(X,Y)U(D).Forexample,Figure3.1,Figure3.2andfigure3.3.YOneD1O1xFigure3.1YOneO2xFigure3.2YDCOaBxFigure3.3thedistributionfunctionofth
37、erandomvector(X,Y)istwodimensionalnormaldistributionAmongthem,5parametersarecalled(X,Y)andobeytwodimensionalnormaldistribution,Itisdenotedas(X,Y)NFromthecalculationformulaofedgedensity,itcanbededucedthatthetwonormaldistributionofthetwodimensionalnormaldistributionisstillnormaldistribution,Thatis,XNH
38、owever,ifXN(X,Y)isnotnecessarilyatwo-dimensionalnormaldistribution).(10)functiondistributionZ=X+Yiscalculatedaccordingtodefinition:Forthecontinuoustype,fZ(z)=Twoindependentnormaldistributionsandstillnormaldistribution().Thelinearcombinationofnindependentnormaldistributionstillobeysthenormaldistribut
39、ion.Z=max,min(X1,X2),.Xn)iftheyareindependentofeachother,theirdistributionfunctionsareZ=max,min(X1,X2),.ThedistributionfunctionofXnis:distributionIfnrandomvariablesareindependentofeachotherandobeythestandardnormaldistribution,thesumofsquaresofthemcanbeprovedThedistributiondensityis0Wecalltherandomva
40、riableWtoobeythedistributionofdegreeoffreedomn,denotedasWTheso-calleddegreeoffreedomreferstothenumberofindependentnormalrandomvariables,whichisanimportantparameterinthedistributionofrandomvariables.Thedistributionsatisfiesadditivity:SetbeThetdistributionisX,andYistwoindependentrandomvariablesFunctio
41、ncanbeprovedTheprobabilitydensityis0WecalltherandomvariableTtoobeythetdistributionofdegreeoffreedomn,denotedasTt(n).Fdistributionisset,andXandYareindependent,andtheprobabilitydensityfunctioncanbeprovedtobeWecalltherandomvariableFobeytheFdistributionwiththefirstdegreeoffreedomasN1andtheseconddegreeof
42、freedomasN2,whichisdenotedasFf(N1,N2)Thefourthchapteristhenumericalcharacteristicsofrandomvariablesdiscretecontinuoustypeofdigitalcharacteristicsofone-dimensionalrandomvariablesExpectExpectationisthemeanvalue,andXisadiscreterandomvariable,whosedistributionlawisP()=PK,k=1,2,.N,(absoluteconvergence)Xi
43、sacontinuousrandomvariablewhoseprobabilitydensityisf(x),(absoluteconvergenceisrequired)TheexpectedY=g(X)offunctionY=g(X)varianceD(X)=EX-E(X)2,standarddeviation,Forthepositiveintegerk,themathematicalexpectationoftheKpoweroftherandomvariableXisthekorderoriginmomentofX,whichisdenotedasVKVk=E(Xk=k=1,2),
44、.Forthepositiveintegerk,themathematicalexpectationoftheKpoweroftherandomvariableXandE(X)differenceisthecentralmomentofkorderofX=,k=1,2,.Forthepositiveintegerk,themathematicalexpectationoftheKpoweroftherandomvariableXisthekorderoriginmomentofX,whichisdenotedasVKV(Xk)=k=EK=1,2,.Forthepositiveintegerk,
45、themathematicalexpectationoftheKpoweroftherandomvariableXandE(X)differenceisthecentralmomentofkorderofX=K=1,2,.TheChebyshevinequalityhasarandomvariableXwithmathematicalexpectationE(X)=a,varianceD(X)=sigma2,thenforanypositivenumberepsilon,therearethefollowingChebyshevinequalitiesTheChebyshevinequalit
46、ygivestheprobabilityinthecaseofthedistributionofunknownXItisofgreatsignificanceintheory.thepropertiesofexpectation(1)E(C)=CE(CX)=CE(X)E(X+Y)=E(X)+E(Y),E(XY)=E(X)E(Y),sufficientcondition:XandYareindependent;Necessaryandsufficientconditions:XandYareuncorrelated.thenatureofvariance(1)D(C)=0;E(C)=CD(aX)
47、=a2D(X);E(aX)=aE(X)D(aX+b)=a2D(X);E(aX+b)=aE(X)+bD(X)=E(X2)-E2(X)D(X+Y)=D(X)+D(Y),sufficientcondition:XandYareindependent;Necessaryandsufficientconditions:XandYareuncorrelated.D(X+Y)=D(X)+D(Y)+2E(X-E(X)(Y-E(Y)isunconditionallyestablished.AndE(X+Y)=E(X)+E(Y)isunconditionallyestablished.expectationand
48、varianceexpectationvarianceofcommondistribution0-1distributionPtwoitemdistributionNPPoissondistributionGeometricdistributionHypergeometricdistributionuniformdistributionexponentialdistributionNormaldistributionN2nDigitalcharacteristicexpectationoftdistribution0(n2)(5)twodimensionalrandomvariablesExp
49、ectationoffunction=varianceCovarianceforrandomvariablesXandY,calledtheirtwoordermixedcentralmomentsforXandYcovarianceorcorrelationmoments,thatis,thatisCorrespondingtothesign,thevarianceD(X)andD(Y)ofXandYcanalsobedenotedasand.ThecorrelationcoefficientsforrandomvariablesXandY,ifD(X)0,D(Y)0,arecalledAs
50、thecorrelationcoefficientbetweenXandY,denotedby(sometimesabbreviatedas).|islessthan1,when|=1,XandYcompletely:CompletecorrelationAtthetime,XwasnotassociatedwithY.Thefollowingfivepropositionsareequivalent:1;CoV(X,Y)=0;E(XY)=E(X)E(Y);D(X+Y)=D(X)+D(Y);D(X-Y)=D(X)+D(Y)Themixedmomentsofcovariancematrixfor
51、randomvariablesXandY,ifexist,arecalledXandYmixedordermomentsofk+lorder,denotedask+lmixedcentralmoment:thenatureofcovariance(I)cov(X,Y)=cov(Y,X);(II)cov(aX,bY)=abcov(X,Y);(III)cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y);(IV)cov(X,Y)=E(XY)-E(X)E(Y)independentanduncorrelated(I),iftherandomvariableXandYareindepend
52、entofeachother,then,conversely,nottrue.(II)if(X,Y)N(),ThenecessaryandsufficientconditionfortheindependenceofXandYisthatXandYareuncorrelated.TheFifthLawoflargenumbersandthecentrallimittheorem(1)thelawoflargenumbersChebyshevslawoflargenumberswithrandomvariablesX1,X2,.Theyareindependentofeachotherandha
53、vefinitevariance,andareboundedbythesameconstantC:D(Xi)C(i=1,2,.Foranypositivenumberepsilon,thereisapositivenumberSpecialcase:ifX1,X2,.WiththesamemathematicalexpectationE(XI)=muon,thentheupperformbecomes.BernoullislawoflargenumbersisthenumberofeventsAoccurringinthenindependenttest,andPistheprobabilit
54、ythattheeventAoccursineachtest,andforanypositivenumberepsilon,thereisBernoullislawoflargenumbersshowsthatwhenthenumberoftestnislarge,theprobabilityofoccurrenceofeventAismorelikelytobedistinguishedThisdescribesthestabilityofthefrequencyinstrictmathematicalform.ThelawoflargenumbersforsymplecticsetX1,X
55、2,.Xn,.Itisasequenceofindependentandidenticallydistributedrandomvariables,andE(Xn)=(2)centrallimittheoremLeviLindbergtheoremlettherandomvariableX1,X2,.Theyareindependentofeachother,obeythesamedistribution,havethesamemathematicalexpectationandvariance:then,randomvariableandtheThedistributionfunctionF
56、n(x)hasanarbitraryrealnumberxThistheoremisalsocalledthecentrallimittheoremofindependenceandidenticallydistribution.LaplassedeMoivretheoremletrandomvariableswithparametersN,P(0p1)ofthetwodistribution,thenforanyrealnumberx,a(3)ifthetwotheoremsarepositive,then.Thelimitdistributionofhypergeometricdistri
57、butionistwotermdistribution.ifthePoissontheoremispositive,thenAmongthem,k=0,1,2,.N,.ThelimitdistributionofthetwodistributionisPoissondistribution.Thesixthchapter:sampleandsamplingdistributionthebasicconceptofmathematicalstatisticsinthemathematicalstatistics,oftentheobjectofa(ormore)indicatorsofthewh
58、oleknownastheoverall(ormaternal).Wealwaysregardthepopulationasarandomvariable(orarandomvector)withdistribution.Eachunitintheindividualpopulationiscalledasample(oranindividual).Inthesample,wecallsomesamplesextractedfromthepopulationassamples.Thenumberofsamplescontainedinthesampleiscalledthesamplesize
59、,whichisgenerallyexpressedinn.Ingeneral,thesamplesareregardedasnindependentvariableswiththesamedistributionasthepopulation.Suchsamplesarecalledsimplerandomsamples.Whenreferringtotheresultsextractedatanytime,theyrepresentnrandomvariables(samples);afteraspecificdecimation,theyrepresentnspecificvalues(
60、samplevalues).Wecallitthedualityofthesample.Thesamplefunctionandstatisticsaresetasasampleofthepopulation()Forthesamplefunction,whichisacontinuousfunction.Ifanyunknownparameterisnotincluded,itiscalled(a)statistic.Commonstatisticsandtheirproperties,samplemeanSamplevarianceSamplestandarddeviationSample
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年信息安全保密协议
- 一年级下册数学教案-第7单元 第2课时 简单的图形与数字的变化规律人教新课标
- 企业创新管理制度的构建与实施
- 2023年班主任职业生涯规划方案
- 交通枢纽视频监控维保方案
- 二年级上册数学教案-第六单元第3课时8的乘法口诀 人教版
- 四年级《Weather》说课稿
- 一年级下册数学教案-7.找规律(31)-人教版
- 小学国庆节爱国主义教育方案
- 大班健康教案详案及教学反思《植树造林》
- 2022年秋新教材高中英语Unit2SuccessTheImportanceofFailure教案北师大版选择性必修第一册
- 初三九年级青骄第二课堂期末考试题及参考答案
- 职业生涯人物访谈报告(采访教师)
- 四年级上册美术课件-第6课 眼镜的设计丨浙美版 (共10张PPT)
- 蚊类防制技术规范(2020年版)
- 水 泵 安 装 记 录
- 类比-完整版获奖课件
- 物体的质量及其测量 完整版课件
- pcs-9882ad说明书-国内中文版
- 外研版六年级上册英语期中试卷(含听力音频)
- 环境和物体表面的清洁与消毒制度
评论
0/150
提交评论